integral of sin^-1(2x)
Answers
Answer:
Step-by-step explanation:
Let's assune that
Therefore, we get
It's of the form .
Solving further, we get
Refer to the attachment
Hence , we get,
Answer:
Step-by-step explanation:
I=\displaystyle \int { \sin }^{ - 1} (2x)dxI=∫sin
−1
(2x)dx
Let's assune that
2x = \sin( \theta)2x=sin(θ)
= > 2dx = \cos( \theta) d \theta=>2dx=cos(θ)dθ
Therefore, we get
\begin{lgathered}I=\displaystyle \int \frac{1}{2} { \sin }^{ - 1} ( \sin \theta) \cos \theta d \theta \\ \\ = \frac{1}{2} \displaystyle \int \theta \cos \theta d \theta\end{lgathered}
I=∫
2
1
sin
−1
(sinθ)cosθdθ
=
2
1
∫θcosθdθ
It's of the form \displaystyle \int (uv) dx∫(uv)dx .
Solving further, we get
Refer to the attachment
Hence , we get,
I= x \: { \sin }^{ - 1} (2x) + \frac{ \sqrt{1 - 4 {x}^{2} } }{2} + cI=xsin
−1
(2x)+
2
1−4x
2
+c
follow