Math, asked by GandhiRajagopal, 2 months ago

integral of sin^6x dx​

Answers

Answered by Anonymous
41

 \large{ \underline{ \underline{ \bigstar{  \:  \:  \:  \:  \:  \:  \pmb{ \sf{Solution \:  : }}}}}} \\  \\

 \:   \:  \:  \:  \:  \:  \:  \:  \int {\sin}^{6} (x) dx \\  \\

 \dashrightarrow \int { \bigg(1 -  { \cos }^{2} (x) \bigg)}^{3} dx \\  \\

\dashrightarrow \int \bigg(1  +  {\cos}^{3} (x) - 3 \cos(x) + 3 {\cos}^{2} (x) \bigg)  dx  \\  \\

\dashrightarrow \int \: dx  -  \int \frac{1}{4}  \bigg( \cos(3x)  + 3 \cos(x)  \bigg)dx - 3 \int \cos(x) dx +  \frac{3}{2}  \bigg( \int \cos(2x) dx +  \int \: dx \bigg) \\  \\

\dashrightarrow \:x -  \frac{1}{4}\sin(3x)  - {\frac{3}{4} \sin(x)  }  -  {3 \sin(x)  } + \frac{3}{2}  \sin(2x)  +  \frac{3}{2} x  + c \:  \tt  \:  \:  \:  \:  \:  \:  \: \big[  c \:  \: is \:  \: integral \:  \: constant\big]\\  \\

\dashrightarrow   { \blue{\frak{ \frac{5}{2} x + \frac{1}{4} \sin(3x)  +  \frac{3}{2}  \sin(2x)-\frac{15}{4}\sin(x)+c  }}}  \:  \:  \:  \:  \:  \:  \bf  ans.\\  \\

 \large{ \underline{ \underline{ \bigstar{  \:  \:  \:  \:  \:  \:  \pmb{ \sf{Used \:  \:  Concepts \:  : }}}}}} \\  \\

 \tt \rightsquigarrow \:  \: \:   \cos(3x)  = 4 { \cos}^{3} (x) - 3 \cos(x)  \\

 \tt \rightsquigarrow  \:  \:  \:  \cos(2x)  =  2{ \cos }^{2} (x) - 1 \\

 \\  \\  \\  \\  \\  \mathcal{\small \colorbox{aqua}{@MATHOLOGER}}

Answered by sandy1816
0

Answer:

your answer attached in the photo

Attachments:
Similar questions