Math, asked by mnzsdx, 10 months ago

Integral of tan^3 2x dx

Answers

Answered by Anonymous
1

Answer:

Split up

tan

3

(

x

)

into

tan

2

(

x

)

tan

(

x

)

then rewrite

tan

2

(

x

)

using the identity

tan

2

(

θ

)

+

1

=

sec

2

(

θ

)

tan

2

(

θ

)

=

sec

2

(

θ

)

1

.

tan

3

(

x

)

d

x

=

tan

2

(

x

)

tan

(

x

)

d

x

=

(

sec

2

(

x

)

1

)

tan

(

x

)

d

x

Distribute:

=

sec

2

(

x

)

tan

(

x

)

d

x

tan

(

x

)

d

x

For the first integral, apply the substitution

u

=

tan

(

x

)

d

u

=

sec

2

(

x

)

d

x

, both of which are already in the integral.

=

u

.

d

u

tan

(

x

)

d

x

=

u

2

2

tan

(

x

)

d

x

=

tan

2

(

x

)

2

tan

(

x

)

d

x

Now rewrite

tan

(

x

)

as

sin

(

x

)

cos

(

x

)

and apply the substitution

v

=

cos

(

x

)

d

v

=

sin

(

x

)

d

x

.

=

tan

2

(

x

)

2

sin

(

x

)

cos

(

x

)

d

x

=

tan

2

(

x

)

2

+

sin

(

x

)

cos

(

x

)

d

x

=

tan

2

(

x

)

2

+

d

v

v

This is a common integral:

=

tan

2

(

x

)

2

+

ln

(

|

v

|

)

+

C

=

tan

2

(

x

)

2

+

ln

(

|

cos

(

x

)

|

)

+

C

Similar questions