Integral of tan^3 2x sec 2x
Answers
Answered by
18
Write tan³2x=tan²2x*tan2x
⇒(sec²2x-1)*tan2x
Now the integral is:∫(sec²2x-1)*tan2x.sec2x*dx
let sec2x=t
⇒2sec2x*tan2x*dx=dt
⇒sec2x*tan2x*dx=dt/2
⇒1/2∫(t²-1)*dt
⇒1/2[t³/3-t]+c
⇒sec³2x/6-sec2x/4+c
⇒(sec²2x-1)*tan2x
Now the integral is:∫(sec²2x-1)*tan2x.sec2x*dx
let sec2x=t
⇒2sec2x*tan2x*dx=dt
⇒sec2x*tan2x*dx=dt/2
⇒1/2∫(t²-1)*dt
⇒1/2[t³/3-t]+c
⇒sec³2x/6-sec2x/4+c
Answered by
11
Step-by-step explanation:
Let
To find,
.....(1)
Let
⇒ [∵]
⇒
Now, equation (1) becomes, we get
⇒
⇒ .....(2)
Where, C is calles integration constant.
[∵ ]
Put in (2), we get
⇒
Hence,
Similar questions