Math, asked by mukultanwar5628, 1 year ago

Integral of tan^3 2x sec 2x

Answers

Answered by krishnadav150
18
Write tan³2x=tan²2x*tan2x
⇒(sec²2x-1)*tan2x
Now the integral is:∫(sec²2x-1)*tan2x.sec2x*dx
let sec2x=t
⇒2sec2x*tan2x*dx=dt
⇒sec2x*tan2x*dx=dt/2
⇒1/2∫(t²-1)*dt
⇒1/2[t³/3-t]+c
⇒sec³2x/6-sec2x/4+c







Answered by harendrachoubay
11

I=\dfrac{1}{6} \sec^3 2x-\dfrac{1}{2} \sec 2x+c

Step-by-step explanation:

Let I=\int \tan^3 2x \sec 2x \, dx

To find, \int \tan^3 2x \sec 2x \, dx=?

I=\int tan^2 2x\times tan2x \sec 2x \, dx

I=\int (sec^22x-1)\times tan2x \sec 2x \, dx      .....(1)

Let \sec 2x=t

2\sec 2x.\tan 2xdx=dt [∵\dfrac{d(\sec x)}{dx} =\sec x\tan x]

\sec 2x\tan 2xdx=\dfrac{dt}{2}

Now, equation (1) becomes, we get

I=\dfrac{1}{2} \int (t^2-1) \, dt

I=\dfrac{1}{2} [\dfrac{t^{2+1}}{2+1} -t]+C   .....(2)

Where, C is calles integration constant.

[∵ \int x^{n} dx=\dfrac{x^{n+1}}{n+1}]

Put \sec 2x=t in (2), we get

I=\dfrac{1}{6} \sec^3 2x-\dfrac{1}{2} \sec 2x+c

Hence, I=\dfrac{1}{6} \sec^3 2x-\dfrac{1}{2} \sec 2x+c

Similar questions