integral of tanx tan2x tan3x dx=
Answers
Answered by
2
Hope it will help. Have a good day.
Attachments:
Answered by
1
Given:
The expression tanx tan2x tan3x
To find:
Integral of tanx tan2x tan3x dx
Solution:
From given, we have,
The expression is tan x tan 2x tan 3x
tan x tan 2x tan 3x = tan 3x - tan 2x - tan x
∫ (tan x tan 2x tan 3x ) = ∫ (tan 3x - tan 2x - tan x)
= ∫ tan 3x dx - ∫ tan 2x dx - ∫ tan x dx
= 1/3 log (sec 3x) - 1/2 log (sec 2x) - 1 log (sec x)
∴ ∫ (tan x tan 2x tan 3x ) = 1/3 log (sec 3x) - 1/2 log (sec 2x) - 1 log (sec x) + c
Similar questions