Math, asked by pd629547, 2 months ago

integral of xsinxcosx/(a^2 cos^2x + b^2 sin^2x)^2 from (0 to pi/2)​

Answers

Answered by dineshsahooccs
0

Step-by-step explanation:

Correct option is

A

4

Let I=∫

0

π

(a

2

cos

2

x+b

2

sin

2

x)

2

xdx

Applying integration property f(a−x)=f(x)

2I=∫

0

π

(a

2

cos

2

+x+b

2

sin

2

x)

2

πdx

=2π∫

0

π/2

(a

2

cos

2

x+b

2

sin

2

x)

2

dx

Using integration property f(2a−x)=f(x)

Therefore

I=π∫

0

π/2

(a

2

+b

2

tan

2

x)

2

sec

2

xsec

2

xdx

Put btanx=atanθ⇒bsec

2

xdx=asec

2

θdθ

⇒sec

2

xdx=

b

a

(1+tan

2

θ)dθ

Therefore

I=π∫

0

π/2

a

4

(1+tan

2

θ)

2

(1+tan

2

x)

b

a

(1+tan

2

θ)dθ

=

a

3

b

π

0

π/2

(1+

b

2

a

2

tan

2

θ)cos

2

θdθ

=

a

3

b

3

π

0

π/2

(b

2

cos

2

θ+a

2

sin

2

θ)dθ

=

a

3

b

3

π

[

2

1

,

2

π

](b

2

+a

2

)=

4

π

2

a

3

b

3

a

2

+b

2

Similar questions