Math, asked by vamsisudha8242, 1 year ago

Integral tanxsec^2x dx/√a^2+b^2tan^2x

Answers

Answered by AdorableMe
32

GIVEN EXPRESSION :-

\sf{\dfrac{tan(x)sec^2(x)}{\sqrt{a^2+b^2tan^2(x)} }dx}

OBJECTIVE :-

To integrate the given expression.

SOLUTION :-

\displaystyle{\sf{\int \frac{sec^2(x)tan(x)}{\sqrt{b^2tan^2(x)+a^2} } dx}}

\rule{100}{1}

\displaystyle{\sf{Let\ b^2tan^2(x)+a^2=u}}\\\\\displaystyle{\sf{= Then\ \frac{du}{dx}=2b^2sec^2(x)tan(x)}\:\:\:\:\cdots(By\ differentiation)}

\displaystyle{\sf{\longrightarrow dx=\frac{1}{2b^2sec^2(x)tan(x)} du}}

\rule{100}{1}

\displaystyle{\sf{= \frac{1}{2b^2}\int \frac{1}{\sqrt{u} }du  }}

\boxed{\sf{Solving\ \int \frac{1}{\sqrt{u}} du :-}}

\rule{100}1

Using power rule :-

\displaystyle{\sf{= \int u^\frac{-1}{2}du }}

\displaystyle{\sf{=\frac{u^{\frac{-1}{2} +1}}{\frac{-1}{2} +1} }}

\displaystyle{\sf{= 2\sqrt{u} }}

\rule{100}1

\displaystyle{\sf{\frac{1}{2b^2} \int \frac{1}{\sqrt{u} } du }}

\displaystyle{\sf{= \frac{\sqrt{u} }{b^2} }}

We know, u = b²tan²(x) + a². Putting the value :-

\boxed{\displaystyle{\sf{=\frac{\sqrt{b^2tan^2(x)a^2} }{b^2} +C}}}\:\:\:\:\:\:\:\:\:\:\:\: \mathbf{\cdots ANSWER}            


BrainlyConqueror0901: well done : )
Similar questions