integral
Answers
Answer:
log(cosx+sinx)+c
Step-by-step explanation:
Concept:
I have applied decomposition method to solve this problem.
In decomposition method, the given non-integrable function is decomposed into integrable function by using algebraic identities, trigonometric identities, etc.
\begin{lgathered}\frac{cos2x}{(cosx+sinx)^2}\\\\=\frac{cos^2x-sin^2x}{(cosx+sinx)^2}\\\\=\frac{(cosx-sinx)(cosx+sinx)}{(cosx+sinx)^2}\\\\=\frac{cosx-sinx}{cosx+sinx}\end{lgathered}
(cosx+sinx)
2
cos2x
=
(cosx+sinx)
2
cos
2
x−sin
2
x
=
(cosx+sinx)
2
(cosx−sinx)(cosx+sinx)
=
cosx+sinx
cosx−sinx
\begin{lgathered}Let,\\\\I=\int{\frac{cos2x}{(cosx+sinx)^2}}\:dx\\\\=\int{\frac{cosx-sinx}{cosx+sinx}}\:dx\end{lgathered}
Let,
I=∫
(cosx+sinx)
2
cos2x
dx
=∫
cosx+sinx
cosx−sinx
dx
\begin{lgathered}Take, \\\\t=cosx+sinx\\\\\frac{dt}{dx}= -sinx+cosx\\\\dt= (cosx-sinx)\:dx\end{lgathered}
Take,
t=cosx+sinx
dx
dt
=−sinx+cosx
dt=(cosx−sinx)dx
\begin{lgathered}Now,\\\\I=\int{\frac{1}{t}}dt\\\\I=logt+c\\\\I=log(cosx+sinx)+c\end{lgathered}
Now,
I=∫
t
1
dt
I=logt+c
I=log(cosx+sinx)+c