Math, asked by kbalaji96, 1 year ago

Integral x^2/1+5x dx

Attachments:

Answers

Answered by sonuaidalpur
2
step by step solution
Attachments:
Answered by harendrachoubay
2

\int {\dfrac{x^2}{1+5x} } \, dx=\dfrac{1}{125} (\dfrac{t^2}{2}-2t+\log [t]+c )

Step-by-step explanation:

LetI=\int {\dfrac{x^2}{1+5x} } \, dx

To find, \int {\dfrac{x^2}{1+5x} } \, dx=?

I=\int {\dfrac{x^2}{1+5x} } \, dx

Let 1 + 5x = t

⇒ 5dx = dt ⇒ dx = \dfrac{dt}{5}

x=\dfrac{t-1}{5}

I=\dfrac{1}{5} \int {\dfrac{(\dfrac{t-1}{5})^2}{t} } \, {dt}

I=\dfrac{1}{5} \int {\dfrac{(\dfrac{t^2-2t+1}{25}}{t} } \, {dt}

I=\dfrac{1}{125} \int {(t-2+\dfrac{1}{t}}) \, {dt}

I=\dfrac{1}{125} (\dfrac{t^2}{2}-2t+\log [t]+c )

Where, c is called integration constant

Hence, \int {\dfrac{x^2}{1+5x} } \, dx=\dfrac{1}{125} (\dfrac{t^2}{2}-2t+\log [t]+c ).

Similar questions