Math, asked by BrainlyTurtle, 3 months ago

#Integrals

#Quality Question >>>


Evaluate

 \int \dfrac{1}{ {cos}^{4}x +  {sin}^{4}x  } dx


Answers

Answered by SparklingBoy
33

 I= \int \dfrac{1}{ {cos}^{4}x + {sin}^{4}x } dx

 \sf Divide \:  Numerator \:  and \:  Denominator \\ \sf  \: by  \: {cos}^{4} x

  I =   \int\dfrac{ {sec}^{4}x}{1 +  {tan}^{4}x }  dx \\  \\   = \int \frac{ {sec}^{2} x . {sec}^{2}x }{1 +  {tan}^{4}x }  dx \\  \\   = \int \frac{1 +  {tan}^{2} x}{1 +  {tan}^{4}x } . {sec}^{2}x \:  dx \\  \\  \sf put \: tanx = z\implies {sec}^{2} x \: dx = dz\\  \\  I =  \int \frac{1 +  {z}^{2} }{1 +  {z}^{4} }  \: dz \\  \\  =  \int \dfrac{ \dfrac{1}{ {z}^{2}  } + 1 }{ \dfrac{1}{ {z}^{2}  }  +  {z}^{2} }  \: dz \\  \\  =   \int \dfrac{ \dfrac{1}{ {z}^{2}  } + 1 }{( z - \dfrac{1}{ {z}^{}    }   {)}^{2}  + 2}  \: dz

 \sf let \: z -  \dfrac{1}{z}  = t \implies (1 +  \dfrac{1}{ {z}^{2} } )dz = dt

 I =  \int \dfrac{dt}{ {t}^{2}  +  ( \sqrt{ {2} }  {)}^{2} }  \\  \\  =  \sf \frac{1}{ \sqrt{2} }   {tan}^{ - 1}  \frac{t}{  \sqrt{2}  }  + c \\  \\  =  \sf  \frac{1}{ \sqrt{2} }   \:  \: {tan}^{ - 1}  \:  \:  \frac{z -  \dfrac{1}{z} }{ \sqrt{2} }  + c \\  \\ \sf   \frac{1}{ \sqrt{2} } \:  tan {}^{ - 1}  \:  \frac{ {z}^{2} - 1 }{ \sqrt{2}  \: z}  + c \\  \\  = \sf  \frac{1}{ \sqrt{2} }  \: tan {}^{ - 1}   \:  \frac{ {tan}^{2}x - 1 }{ \sqrt{2}  \: tan \: x}  + c

Answered by amansharma264
36

EXPLANATION.

\sf \implies \displaystyle \int \dfrac{1}{cos^{4}x + sin^{4}x  } dx

As we know that,

Divide numerator and denominator by cos⁴(x), we get.

\sf \implies \displaystyle \int  \dfrac{\dfrac{1}{cos^{4}x } }{\dfrac{cos^{4} x}{cos^{4}x }\ + \dfrac{sin^{4}x }{cos^{4} x}  }  \ dx

\sf \implies \displaystyle \int \dfrac{sec^{4} x \ dx}{1 + tan^{4}x }

\sf \implies \displaystyle \int  \dfrac{sec^{2}x . sec^{2}  x \ dx}{1 + tan^{4}x }

As we know that,

Formula of :

⇒ sec²x = 1 + tan²x.

Using this formula in equation, we get.

\sf \implies \displaystyle \int  \dfrac{(1 + tan^{2} x) sec^{2}x \ dx }{(1 + tan^{4}x) }

By using the substitution method, we get.

Let we assume that,

⇒ tan x = t.

Differentiate w.r.t x, we get.

⇒ sec²x dx = dt.

Put the values in the equation, we get.

\sf \implies \displaystyle \int  \dfrac{(1 + t^{2})dt }{(1 + t^{4}) }

Divide numerator and denominator by t², we get.

\sf \implies \displaystyle \int  \dfrac{\bigg(\dfrac{1 + t^{2} }{t^{2} } \bigg)}{\bigg(\dfrac{1 + t^{4} }{t^{2} } \bigg)}  \ dt

\sf \implies \displaystyle \int   \dfrac{\bigg(1 + \dfrac{1}{t^{2}} \bigg)}{\bigg(\dfrac{1}{t^{2} } + t^{2} \bigg)} dt

\sf \implies \displaystyle \int  \dfrac{\bigg( 1 + \dfrac{1}{t^{2} } \bigg)}{\bigg( t - \dfrac{1}{t} \bigg)^{2} + 2} dt

Again we apply substitution method, we get.

Let we assume that,

⇒ t - 1/t = z.

⇒ (1 + 1/t²)dt = dz.

Put the values in the equation, we get.

\sf \implies \displaystyle \int  \dfrac{dz}{z^{2}  + 2} = \int \dfrac{dt}{z^{2}  + (\sqrt{2} )^{2} }

As we know that,

Formula of :

\sf \implies \displaystyle \int  \dfrac{1}{x^{2}  + a^{2} } \ = \dfrac{1}{a} tan^{-1} \bigg(\frac{x}{a} \bigg) + C.

Using this formula in equation, we get.

\sf \implies \displaystyle \dfrac{1}{\sqrt{2} } tan^{-1} \bigg( \dfrac{z}{\sqrt{2} } \bigg) + C.

Put the value of z = t - 1/t in equation, we get.

\sf \implies \displaystyle \dfrac{1}{\sqrt{2} } tan^{-1} \bigg( \dfrac{t - \dfrac{1}{t} }{\sqrt{2} } \bigg) + C.

\sf \implies \displaystyle \dfrac{1}{\sqrt{2} } tan^{-1} \bigg( \dfrac{t^{2}  - 1}{\sqrt{2}t } \bigg) + C.

Put the value of t = tan x in equation, we get.

\sf \implies \displaystyle \dfrac{1}{\sqrt{2} } tan^{-1} \bigg(\dfrac{tan^{2}x - 1 }{\sqrt{2}tan (x) } \bigg) + C.

\sf \implies \displaystyle \int \frac{1}{cos^{4} x + sin^{4} x} dx \ = \displaystyle \dfrac{1}{\sqrt{2} } tan^{-1} \bigg(\dfrac{tan^{2}x - 1 }{\sqrt{2}tan (x) } \bigg) + C.

                                                                                                                       

MORE INFORMATION.

Important points.

If a function can be expressed in terms of elementary function (formula format) then only it is integrable, other wise cannot.

For example :

∫e^(sin x) dx , ∫√sin(x) dx , ∫x⁴/x¹⁰ + 1 dx , ∫dx/㏑ sin x dx.

Similar questions