Math, asked by ajay295, 1 year ago

integrate 1/1+tanx dx

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\displaystyle\tt{\int\dfrac{1}{1+tan(x)}\,dx}

\displaystyle\sf{=\int\dfrac{1}{1+\dfrac{sin(x)}{cos(x)}}\,dx}

\displaystyle\sf{=\int\dfrac{cos(x)}{cos(x)+sin(x)}\,dx}

\displaystyle\sf{=\dfrac{1}{2}\int\dfrac{2\,cos(x)}{cos(x)+sin(x)}\,dx}

\displaystyle\sf{=\dfrac{1}{2}\int\dfrac{cos(x)+cos(x)}{cos(x)+sin(x)}\,dx}

\displaystyle\sf{=\dfrac{1}{2}\int\dfrac{cos(x)+sin(x)+cos(x)-sin(x)}{cos(x)+sin(x)}\,dx}

\displaystyle\sf{=\dfrac{1}{2}\int\dfrac{cos(x)+sin(x)}{cos(x)+sin(x)}\,dx+\dfrac{1}{2}\int\dfrac{cos(x)-sin(x)}{cos(x)+sin(x)}\,dx}

\displaystyle\sf{=\dfrac{1}{2}\int\,dx+\dfrac{1}{2}\int\dfrac{cos(x)-sin(x)}{cos(x)+sin(x)}\,dx}

\displaystyle\sf{=\dfrac{1}{2}\,x+\dfrac{1}{2}\,\ln|cos(x)+sin(x)|+C}

\displaystyle\sf{=\dfrac{x}{2}+\ln\sqrt{sin(x)+cos(x)}+C}

Similar questions