Math, asked by yalamandanaidu61, 10 months ago

Integrate 1/(1+x2) for limit (0,1).​

Answers

Answered by pulakmath007
29

SOLUTION

TO INTEGRATE

\displaystyle \sf{ \int\limits_{0}^{1}  \frac{1}{1 +  {x}^{2} }  \, dx }

EVALUATION

PROCESS : 1

\displaystyle \sf{ \int\limits_{0}^{1}  \frac{1}{1 +  {x}^{2} }  \, dx }

 =  \displaystyle \sf{{ \tan}^{ - 1} x  \: \bigg|_0^1 }

 =  \displaystyle \sf{  { \tan}^{ - 1}(1) -  { \tan}^{ - 1} (0) \: }

 =  \displaystyle \sf{   \frac{\pi}{4}   - 0}

 =  \displaystyle \sf{   \frac{\pi}{4}}

PROCESS : 2 ( Using Indefinite Integral )

\displaystyle \sf{ \int\frac{1}{1 +  {x}^{2} }  \, dx }

 \sf{  =  { \tan}^{ - 1}x + c \: }

Where C is integration constant

Hence

\displaystyle \sf{ \int\limits_{0}^{1}  \frac{1}{1 +  {x}^{2} }  \, dx }

 =  \displaystyle \sf{{ \tan}^{ - 1} x  + c \: \bigg|_0^1 }

 =  \displaystyle \sf{  { \tan}^{ - 1}(1) -  { \tan}^{ - 1} (0)  + c - c\: }

 =  \displaystyle \sf{   \frac{\pi}{4}   - 0 + 0}

 =  \displaystyle \sf{   \frac{\pi}{4}}

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

a

∫ x/2+x⁸ dx , Evaluate it.

-a

https://brainly.in/question/5382314

Answered by himanshu407388
0

Answer:

o

Step-by-step explanation:

SOLUTION

TO INTEGRATE

\displaystyle \sf{ \int\limits_{0}^{1} \frac{1}{1 + {x}^{2} } \, dx }

0

1

1+x

2

1

dx

EVALUATION

PROCESS : 1

\displaystyle \sf{ \int\limits_{0}^{1} \frac{1}{1 + {x}^{2} } \, dx }

0

1

1+x

2

1

dx

= \displaystyle \sf{{ \tan}^{ - 1} x \: \bigg|_0^1 }=tan

−1

x

0

1

= \displaystyle \sf{ { \tan}^{ - 1}(1) - { \tan}^{ - 1} (0) \: }=tan

−1

(1)−tan

−1

(0)

= \displaystyle \sf{ \frac{\pi}{4} - 0}=

4

π

−0

= \displaystyle \sf{ \frac{\pi}{4}}=

4

π

PROCESS : 2 ( Using Indefinite Integral )

\displaystyle \sf{ \int\frac{1}{1 + {x}^{2} } \, dx }∫

1+x

2

1

dx

\sf{ = { \tan}^{ - 1}x + c \: }=tan

−1

x+c

Where C is integration constant

Hence

\displaystyle \sf{ \int\limits_{0}^{1} \frac{1}{1 + {x}^{2} } \, dx }

0

1

1+x

2

1

dx

= \displaystyle \sf{{ \tan}^{ - 1} x + c \: \bigg|_0^1 }=tan

−1

x+c

0

1

= \displaystyle \sf{ { \tan}^{ - 1}(1) - { \tan}^{ - 1} (0) + c - c\: }=tan

−1

(1)−tan

−1

(0)+c−c

= \displaystyle \sf{ \frac{\pi}{4} - 0 + 0}=

4

π

−0+0

= \displaystyle \sf{ \frac{\pi}{4}}=

4

π

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

a

∫ x/2+x⁸ dx , Evaluate it.

-a

Similar questions