Integrate 1/(1+x2) for limit (0,1).
Answers
SOLUTION
TO INTEGRATE
EVALUATION
PROCESS : 1
PROCESS : 2 ( Using Indefinite Integral )
Where C is integration constant
Hence
━━━━━━━━━━━━━━━━
LEARN MORE FROM BRAINLY
a
∫ x/2+x⁸ dx , Evaluate it.
-a
https://brainly.in/question/5382314
Answer:
o
Step-by-step explanation:
SOLUTION
TO INTEGRATE
\displaystyle \sf{ \int\limits_{0}^{1} \frac{1}{1 + {x}^{2} } \, dx }
0
∫
1
1+x
2
1
dx
EVALUATION
PROCESS : 1
\displaystyle \sf{ \int\limits_{0}^{1} \frac{1}{1 + {x}^{2} } \, dx }
0
∫
1
1+x
2
1
dx
= \displaystyle \sf{{ \tan}^{ - 1} x \: \bigg|_0^1 }=tan
−1
x
∣
∣
∣
∣
∣
0
1
= \displaystyle \sf{ { \tan}^{ - 1}(1) - { \tan}^{ - 1} (0) \: }=tan
−1
(1)−tan
−1
(0)
= \displaystyle \sf{ \frac{\pi}{4} - 0}=
4
π
−0
= \displaystyle \sf{ \frac{\pi}{4}}=
4
π
PROCESS : 2 ( Using Indefinite Integral )
\displaystyle \sf{ \int\frac{1}{1 + {x}^{2} } \, dx }∫
1+x
2
1
dx
\sf{ = { \tan}^{ - 1}x + c \: }=tan
−1
x+c
Where C is integration constant
Hence
\displaystyle \sf{ \int\limits_{0}^{1} \frac{1}{1 + {x}^{2} } \, dx }
0
∫
1
1+x
2
1
dx
= \displaystyle \sf{{ \tan}^{ - 1} x + c \: \bigg|_0^1 }=tan
−1
x+c
∣
∣
∣
∣
∣
0
1
= \displaystyle \sf{ { \tan}^{ - 1}(1) - { \tan}^{ - 1} (0) + c - c\: }=tan
−1
(1)−tan
−1
(0)+c−c
= \displaystyle \sf{ \frac{\pi}{4} - 0 + 0}=
4
π
−0+0
= \displaystyle \sf{ \frac{\pi}{4}}=
4
π
━━━━━━━━━━━━━━━━
LEARN MORE FROM BRAINLY
a
∫ x/2+x⁸ dx , Evaluate it.
-a