Math, asked by nisreensabir3619, 1 year ago

integrate 1/sin^4x+sin^2xcos^2x+cos^4x

Answers

Answered by nuuk
6

solution:

I = ∫ dx/sin˄4x + cos˄4x – 2sin˄2xcos˄2x

 = ∫dx/(sin˄2x+cos˄2x)˄2 – 2sin˄xcos˄2x +sin^2xcos˄2x

= ∫ dx/1-sin^2xcos^2x

 = ∫ dx/1-sin^2x(1-sin^2x)

 =  ∫dx/1-sin^2x + sin^4x

 =  ∫ dx/cos^2x + sin^4x

Dividing numerator and denominator by cos^4x  

 =  ∫ 1/cos^4x dx/cos2x/cos^4x + sin^4x/cos^4x

=  ∫ sec^4x/sec^2x + tan^4x dx

= ∫sec^2x.sec^2x/sec^2x + tan^4x dx

 =  ∫ (1+ ten^2x)sec^2x/1+tan^2x + tan^4x dx

Putting tanx = t

Sec^2xdx = dt

Therefore,

I =  ∫ 1+t^2/1+t^2 +t^4 dt

  = ∫t^2 +1/t^4 + t^2 +1 dt

  = ∫ t^2 (1+1/t^2)/t^2(t^2 + 1 + 1/t^2) dt

   = ∫ (1+ 1/t^2)/t^2 +1/t^2 + 1) dt

   = ∫ (1 + 1/t^2)/t – 1/t)^2 + (√3)^2 dt

Put, t – 1/t = u

( 1 + 1/t^2)dt = du

Therefore,

I = du/u^2 + (√3)^2

 = 1/(√3) tan^ -1 (4/√3)+c

 = 1/(√3) tan^ -1 (t – 1/t/√3) +c

 = 1/(√3) tan^ -1 (t^2 – 1/√3) +c

  = 1/(√3) tan^ -1 ( tan^2x -1/√3tanx) + c


Answered by namratakaushik
6

Step-by-step explanation:

hope it will help plz give ur views. this is 5 marks question

Attachments:
Similar questions