integrate (1+tan²x )/(1+tanx)
Answers
Answered by
0
Answer:
(1-tan x^2)/(1+tanx^2)
we know that 1+tanx^2 = secx^2, then the given term is
= (1-( sinx^2/cosx^2))/sec x^2
=((cosx^2-sinx^2)/cosx^2)/ secx^2
But secx^2 = 1/cosx^2
Therefore it can be simplified as
=((cosx^2 - sinx^2)/cosx^2)/(1/cosx^2)
= (( cosx^2-sinx^2)/cosx^2)*cosx^2
= cosx^2-sinx^2
Which equals cos2x
Therefore integral cos2x ,
=sin2x/2
Step-by-step explanation:
Similar questions