Computer Science, asked by eobeom, 9 months ago

Verify following compound statements with reasons for each steps.
a ) [(pvq)∧(p∧¬q)]vq⇔pvq
b ) (p→q) ∧[(¬q∧(rv¬q)]⇔¬(qvp)

Answers

Answered by bestwriters
0

a) [(p v q) ∧ (p ∧ ¬q)] v q ⇔ p v q

p - q

T - T

T - F

F - T

F - F

¬q

F

T

F

T

(p v q)

T

T

T

F

(p ∧ ¬q)

F

T

F

F

(p v q) ∧ (p ∧ ¬q)

F

T

F

F

[(p v q) ∧ (p ∧ ¬q)] v q

T

T

T

F

Thus, [(p v q) ∧ (p ∧ ¬q)] v q ⇔ p v q  is true.

b) (p → q) ∧ [¬q ∧ (r v ¬q)] ⇔ ¬(q v p)

p - q - r

F - F - F

F - F - T

F - T - F

F - T - T

T - F - F

T - F - T

T - T - F

T - T - T

(p → q)

F

F

F

F

T

T

F

F

¬q

T

T

F

F

T

T

F

F

(r v ¬q)

T

T

F

T

T

T

F

T

¬q ∧ (r v ¬q)

T

T

F

F

T

T

F

F

(p → q) ∧ [¬q ∧ (r v ¬q)]

F

F

F

F

T

T

F

F

(q v p)

F

F

T

T

T

T

T

T

¬(q v p)

T

T

F

F

F

F

F

F

Thus, (p → q) ∧ [¬q ∧ (r v ¬q)] ⇔ ¬(q v p) is not possible.

Similar questions