Integrate 2 cos8x sin4x with respect to x
Answers
Answered by
17
Hey there!
∫ 2 cos8x sin4x dx
= 2 ∫ cos8x sin4x dx
Solve : ∫ cos8x sin4x first.
Now, let u = 4x , dx = 1/4du
= 1/4 ∫ cos2u sinu du
Now, Solve : ∫ cos2u sinu du.
= ∫ cos2u sinu du
= ∫ - ( 1 - 2cos²u) sinu du
v = cos u.
du = -1/ sinu dv.
= - ∫ ( 2v² - 1 ) dv
Now solving, ∫ ( 2v² - 1 ) dv
= ∫ 2v² dv - ∫ 1 dv
= 2 ∫ v² dv - ∫ 1 dv
Now solving,
= ∫ v² dv
[ ∫ v^n dv = v ^ n + 1 / n+1 ]
Here n = 2 .
= v^3/3
Also, ∫ 1 dv = v.
So, 2 ∫ v² dv - ∫ 1 dv
= 2v³/3 - v
Now,
- ∫ ( 2v² - 1 ) dv
= v - 2v³/3
{ We have v = cosu }
= cosu - 2cos³u/3
Now,
1/4 ∫ cos2u sinu du
= 1/4 ( cosu - 2 cos³u / 3 )
= cosu /4 - cos³u/6
We know that, u = 4x .
= cos4x/4 - cos³4x/6
Now,
∫ 2 cos8x sin4x
= cos4x/2 - cos³4x/3
Finally,
∫ 2 cos8x sin4x dx = cos4x/2 - cos³4x/3 + C.
Hope helped !
∫ 2 cos8x sin4x dx
= 2 ∫ cos8x sin4x dx
Solve : ∫ cos8x sin4x first.
Now, let u = 4x , dx = 1/4du
= 1/4 ∫ cos2u sinu du
Now, Solve : ∫ cos2u sinu du.
= ∫ cos2u sinu du
= ∫ - ( 1 - 2cos²u) sinu du
v = cos u.
du = -1/ sinu dv.
= - ∫ ( 2v² - 1 ) dv
Now solving, ∫ ( 2v² - 1 ) dv
= ∫ 2v² dv - ∫ 1 dv
= 2 ∫ v² dv - ∫ 1 dv
Now solving,
= ∫ v² dv
[ ∫ v^n dv = v ^ n + 1 / n+1 ]
Here n = 2 .
= v^3/3
Also, ∫ 1 dv = v.
So, 2 ∫ v² dv - ∫ 1 dv
= 2v³/3 - v
Now,
- ∫ ( 2v² - 1 ) dv
= v - 2v³/3
{ We have v = cosu }
= cosu - 2cos³u/3
Now,
1/4 ∫ cos2u sinu du
= 1/4 ( cosu - 2 cos³u / 3 )
= cosu /4 - cos³u/6
We know that, u = 4x .
= cos4x/4 - cos³4x/6
Now,
∫ 2 cos8x sin4x
= cos4x/2 - cos³4x/3
Finally,
∫ 2 cos8x sin4x dx = cos4x/2 - cos³4x/3 + C.
Hope helped !
rishilaugh:
great thanks
Answered by
11
we know, formula,
cos2Θ = 2cos²Θ - 1 , use it here
∴ cos8x = 2cos²4x -1
Now, ∫2(2cos²4x -1)sin4x.dx
= ∫(4cos²4x.sin4x - 2sin4x)dx
= ∫(4cos²4x.sin4x)dx - ∫(2sin4x)dx
=- ∫(cos4x)².{-4sin4x}dx - 2∫sin4x.dx
We know, one important thing,
∫f(x)ⁿf'(x)dx = f(x)ⁿ⁺¹/(n + 1) , use this concept in place of ∫(cos4x)²{-4sin4x}dx
Here if cos4x = f(x) then, -4sin4x = f'(x)
Then, ∫(cos4x)² {-4sin4x}dx = (cos4x)³/3
Hence, I = -(cos4x)³/3 + 2cos4x/4 + K [ ∵∫sinxdx = -cosx ]
So, answer is [ cos4x/2 - cos³4x/3 + K ] , here K is constant
Similar questions