Math, asked by tejnarayanvishw, 6 months ago

Integrate 2v/v^2-1.dv

Answers

Answered by Asterinn
3

 \implies\displaystyle \int \dfrac{2v}{ {v}^{2}  - 1} \: dv

We will Integer the above expression using substitution method.

let \:  \:  ( {v}^{2}  - 1) = t

 2v   \: dv = dt

\implies\displaystyle \int \dfrac{dt}{ t} \:

\implies\displaystyle   log(t) + c

now put t = v²-1

\implies\displaystyle   log( {v}^{2} - 1 ) + c

Answer :

\displaystyle   log( {v}^{2} - 1 ) + c

_____________________

\large\bf\blue{Learn\:More}

∫ 1 dx = x + C

∫ sin x dx = – cos x + C

∫ cos x dx = sin x + C

∫ sec2 dx = tan x + C

∫ csc2 dx = -cot x + C

∫ sec x (tan x) dx = sec x + C

∫ csc x ( cot x) dx = – csc x + C

∫ (1/x) dx = ln |x| + C

∫ ex dx = ex+ C

∫ ax dx = (ax/ln a) + C

_________________________

Similar questions