Math, asked by janamanaswita, 9 months ago

integrate( 2x^2-1)÷x(x^2-logx​

Answers

Answered by senboni123456
10

Step-by-step explanation:

Given to integrate (2x²-1)/x(x²-logx)

Now,

 \int \frac{(2 {x}^{2}  - 1)dx}{x( {x}^{2} -  log(x))  }

 =  \int \frac{ (\frac{2{x}^{2} - 1 }{x}) dx}{ {x}^{2}  -  log(x) )}

 =  \int \frac{(2x -  \frac{1}{x} )dx}{ ({x}^{2} -  log(x))  }

Let, x² - log(x)=t

=>(2x - 1/x)dx = dt

so,

 = \int \frac{dt}{t}

 =  ln \: |t|+ c

 =  ln \:  | {x}^{2}  -  log(x) | + c

Similar questions