Physics, asked by akshata473, 5 months ago

integrate (2xsquare+x)dx​

Answers

Answered by Anonymous
7

Solution:-

We have

 \to \sf\int(2 {x}^{2}  + x)dx \\

Now we using This Identity

 \sf \to \:  \int {x}^{n} dx =  \dfrac{x {}^{n + 1} }{n + 1}  + c \:  \:  \: where \: n \not =  \:  - 1 \\

Now

 \to \sf\int(2 {x}^{2}  + x)dx \\

 \sf \to \:  \int2 {x}^{2} dx +  \int{x}dx \\

 \sf \to \: 2 \int {x}^{2} dx +  \int{x}dx \\

 \sf \to \: 2  \bigg(\dfrac{ {x}^{2 + 1} }{2 + 1}  \bigg) +   \dfrac{ {x}^{1 + 1} }{1 + 1}  + c

 \sf \to \: 2 \bigg( \dfrac{ {x}^{3} }{3}  \bigg) +  \dfrac{ {x}^{2} }{2}  + c

 \sf \to \:  \dfrac{2 {x}^{3} }{3}  +  \dfrac{ {x}^{2} }{2}  + c

Some Formula of Integration

\sf \to \:  \int {x}^{n} dx =  \dfrac{x {}^{n + 1} }{n + 1}  + c \:  \:  \: where \: n \not =  \:  - 1 \\

 \sf \to \:  \int \dfrac{1}{x}dx =  log_{e} |x|  + c \\

 \sf \to \:  \int  {e}^{x} dx   =  {e}^{x}  + c \\

 \sf \to \int  {a}^{x} dx =  \dfrac{ {a}^{x} }{ log_{e}a }  + c \\

Answered by Anonymous
1

Answer:

We have

\begin{gathered} \to \sf\int(2 {x}^{2} + x)dx \\ \end{gathered}

→∫(2x

2

+x)dx

Now we using This Identity

\begin{gathered} \sf \to \: \int {x}^{n} dx = \dfrac{x {}^{n + 1} }{n + 1} + c \: \: \: where \: n \not = \: - 1 \\ \end{gathered}

→∫x

n

dx=

n+1

x

n+1

+cwheren

=−1

Now

\begin{gathered} \to \sf\int(2 {x}^{2} + x)dx \\ \end{gathered}

→∫(2x

2

+x)dx

\begin{gathered} \sf \to \: \int2 {x}^{2} dx + \int{x}dx \\ \end{gathered}

→∫2x

2

dx+∫xdx

\begin{gathered} \sf \to \: 2 \int {x}^{2} dx + \int{x}dx \\ \end{gathered}

→2∫x

2

dx+∫xdx

\sf \to \: 2 \bigg(\dfrac{ {x}^{2 + 1} }{2 + 1} \bigg) + \dfrac{ {x}^{1 + 1} }{1 + 1} + c→2(

2+1

x

2+1

)+

1+1

x

1+1

+c

\sf \to \: 2 \bigg( \dfrac{ {x}^{3} }{3} \bigg) + \dfrac{ {x}^{2} }{2} + c→2(

3

x

3

)+

2

x

2

+c

\sf \to \: \dfrac{2 {x}^{3} }{3} + \dfrac{ {x}^{2} }{2} + c→

3

2x

3

+

2

x

2

+c

Some Formula of Integration

\begin{gathered}\sf \to \: \int {x}^{n} dx = \dfrac{x {}^{n + 1} }{n + 1} + c \: \: \: where \: n \not = \: - 1 \\ \end{gathered}

→∫x

n

dx=

n+1

x

n+1

+cwheren

=−1

\begin{gathered} \sf \to \: \int \dfrac{1}{x}dx = log_{e} |x| + c \\ \end{gathered}

→∫

x

1

dx=log

e

∣x∣+c

\begin{gathered} \sf \to \: \int {e}^{x} dx = {e}^{x} + c \\ \end{gathered}

→∫e

x

dx=e

x

+c

\begin{gathered} \sf \to \int {a}^{x} dx = \dfrac{ {a}^{x} }{ log_{e}a } + c \\ \end{gathered}

→∫a

x

dx=

log

e

a

a

x

+c

Similar questions