integrate (2xsquare+x)dx
Answers
Solution:-
We have
Now we using This Identity
Now
Some Formula of Integration
Answer:
We have
\begin{gathered} \to \sf\int(2 {x}^{2} + x)dx \\ \end{gathered}
→∫(2x
2
+x)dx
Now we using This Identity
\begin{gathered} \sf \to \: \int {x}^{n} dx = \dfrac{x {}^{n + 1} }{n + 1} + c \: \: \: where \: n \not = \: - 1 \\ \end{gathered}
→∫x
n
dx=
n+1
x
n+1
+cwheren
=−1
Now
\begin{gathered} \to \sf\int(2 {x}^{2} + x)dx \\ \end{gathered}
→∫(2x
2
+x)dx
\begin{gathered} \sf \to \: \int2 {x}^{2} dx + \int{x}dx \\ \end{gathered}
→∫2x
2
dx+∫xdx
\begin{gathered} \sf \to \: 2 \int {x}^{2} dx + \int{x}dx \\ \end{gathered}
→2∫x
2
dx+∫xdx
\sf \to \: 2 \bigg(\dfrac{ {x}^{2 + 1} }{2 + 1} \bigg) + \dfrac{ {x}^{1 + 1} }{1 + 1} + c→2(
2+1
x
2+1
)+
1+1
x
1+1
+c
\sf \to \: 2 \bigg( \dfrac{ {x}^{3} }{3} \bigg) + \dfrac{ {x}^{2} }{2} + c→2(
3
x
3
)+
2
x
2
+c
\sf \to \: \dfrac{2 {x}^{3} }{3} + \dfrac{ {x}^{2} }{2} + c→
3
2x
3
+
2
x
2
+c
Some Formula of Integration
\begin{gathered}\sf \to \: \int {x}^{n} dx = \dfrac{x {}^{n + 1} }{n + 1} + c \: \: \: where \: n \not = \: - 1 \\ \end{gathered}
→∫x
n
dx=
n+1
x
n+1
+cwheren
=−1
\begin{gathered} \sf \to \: \int \dfrac{1}{x}dx = log_{e} |x| + c \\ \end{gathered}
→∫
x
1
dx=log
e
∣x∣+c
\begin{gathered} \sf \to \: \int {e}^{x} dx = {e}^{x} + c \\ \end{gathered}
→∫e
x
dx=e
x
+c
\begin{gathered} \sf \to \int {a}^{x} dx = \dfrac{ {a}^{x} }{ log_{e}a } + c \\ \end{gathered}
→∫a
x
dx=
log
e
a
a
x
+c