Math, asked by snehashilly75, 1 month ago

integrate 3x ^ 2 * sin(x ^ 3 + 1) dx​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\tt  {3x}^{2} sin \: ( {x}^{3} + 1) \: dx

Now, we use here method of Substitution,

\red{\rm :\longmapsto\:Put \:  {x}^{3}  + 1 = y}

On differentiating both sides w. r. t. x, we get

\red{\rm :\longmapsto\:\dfrac{d}{dx}( {x}^{3} + 1) = \dfrac{d}{dx}y}

\red{\rm :\longmapsto\: {3x}^{2}  = \dfrac{dy}{dx}}

\red{\rm :\longmapsto\: {3x}^{2}dx  = dy}

On substituting all these values in given integral, we get

 \rm \:  =  \:  \: \displaystyle\int\tt siny \: dy

 \rm \:  =  \:  \:  -  \: cosy \:  +  \: c

 \tt \:  =  \:  \:  -  \: cos( {x}^{3}   + 1)\:  +  \: c

Additional Information :-

Let's solve few more examples of same type!!!

Question: - 1

\red{\rm :\longmapsto\:\displaystyle\int\tt  {e}^{tanx} {sec}^{2} x \: dx}

To solve this integral, we use method of Substitution

\red{\rm :\longmapsto\:Put \: tanx = y}

On differentiating both sides w. r. t. x, we get

\red{\rm :\longmapsto \: \dfrac{d}{dx} \: tanx =\dfrac{d}{dx} y}

\red{\rm :\longmapsto\: {sec}^{2}x \: dx \:  =  \: dy}

So, above integral can be rewritten as

\rm \:  =  \:  \: \displaystyle\int\tt  {e}^{y}  \: dy

\tt \:  =  \:  \:  {e}^{y}  \:  +  \: c

\tt \:  =  \:  \:  {e}^{tanx}  \:  +  \: c

Question :- 2

\red{\rm :\longmapsto\:\displaystyle\int\tt \dfrac{(x + 1)cos(x + logx)}{x} \: dx}

To solve this integral, we use method of Substitution

\red{\rm :\longmapsto\:Put \: x + logx = y}

On differentiating both sides w. r. t. x, we get

\red{\rm :\longmapsto\:\dfrac{d}{dx} \: (x + logx) = \dfrac{d}{dx}y}

\red{\rm :\longmapsto\:1 + \dfrac{1}{x}  = \dfrac{dy}{dx}}

\red{\rm :\longmapsto\: \dfrac{x + 1}{x}  = \dfrac{dy}{dx}}

\red{\rm :\longmapsto\: \dfrac{x + 1}{x} \: dx  =dy}

So, above integral can be rewritten as

\rm \:  =  \:  \: \displaystyle\int\tt cosy \: dy \:

\tt \:  =  \:  \: siny \:  +  \: c

\tt \:  =  \:  \: sin(x + logx) \:  +  \: c

Similar questions