Math, asked by Anonymous, 11 months ago

Integrate cos^2(2x+1) with full steps plzzzzzz......Plzz help......answer only if u know plzz​

Answers

Answered by Anonymous
7

Answer:

\large\bold\red{\frac{ \sin2(2x + 1) }{8}  +  \frac{2x + 1}{4}  + c}

Step-by-step explanation:

Given,

\int { \cos }^{2} (2x + 1)dx

Let,

2x + 1 = y \\  \\  =  > 2dx = dy \\  \\  =  > dx =  \frac{dy}{2}

Therefore,

putting the value,

we get,

 =  \frac{1}{2} \int { \cos }^{2} y \: dy

Now,

we know that,

 \cos(2 \alpha )  = 2 { \cos}^{2}  \alpha  - 1 \\  \\  =  > 2 { \cos }^{2}  \alpha  = 1 +  \cos(2 \alpha )  \\  \\  =  >  { \cos }^{2}  \alpha  =  \frac{1 +  \cos(2 \alpha ) }{2}

Therefore,

from this formula,

we get,

 =  \frac{1}{2} \times  \frac{1}{2}  \int( \cos2y  + 1)dy \\  \\  =  \frac{1}{4} \int( \cos2y + 1)dy \\  \\  =  \frac{1}{4}  \times ( \frac{ \sin2y }{2}  + y) + c \\  \\  =  \frac{ \sin2y }{8}  +  \frac{y}{4}  + c

Putting the value of y =( 2x +1) ,

we get,

 =\large   \bold{\frac{ \sin2(2x + 1) }{8}  +  \frac{2x + 1}{4}  + c}

Where,

C is integral constant

Answered by Rashibeniwal22
1

Answer:

deleted again.....who is this.......

Similar questions