Math, asked by p3rinMoloverbs, 1 year ago

Integrate cos2x/(cosx+sinx)^2

Answers

Answered by MaheswariS
5

\textbf{Given:}

\displaystyle\int{\frac{cos2x}{(cosx+sinx)^2}}\;dx

=\displaystyle\int{\frac{cos2x}{cos^2x+sin^2x+2\,sinx\,cosx}}\;dx

=\displaystyle\int{\frac{cos2x}{1+sin2x}}\;dx

\text{We apply change of variable method to solve the integral}

\boxed{\begin{minipage}{3cm}\textbf{Take t=1+sin2x}\\\\$\frac{dt}{dx}=2\;cos2x\\\\\implies\,\frac{dt}{2}=cos2x\,dx$\end{minipage}}

=\displaystyle\int{\frac{1}{t}}\;\frac{dt}{2}

=\displaystyle\frac{1}{2}\int{\frac{1}{t}}\;dt

=\displaystyle\frac{1}{2}\,log\,t+c

=\displaystyle\frac{1}{2}\,log(1+sin2x)+c

\therefore\bf\displaystyle\int{\frac{cos2x}{(cosx+sinx)^2}}\;dx=\frac{1}{2}\,log(1+sin2x)+c

Find more:

Integrate of ex sec x(1+tanx) dx

https://brainly.in/question/6040969

Answered by rakhithakur
3

Answer:

there are two option

Step-by-step explanation:

hope it help you

Attachments:
Similar questions