Math, asked by kkamboj, 1 year ago

Integrate cos2x.log(cosx + sinx/cosx - sinx)dx

Answers

Answered by ajeshrai
7
you can see your answer
Attachments:
Answered by rinayjainsl
0

Answer:

The required integral is

I = \frac {sin2x}{2} log \frac{cosx + sinx}{cosx - sinx}-\frac{1}{2}log(sec2x) + c

Step-by-step explanation:

Given integral is

I = ∫cos2x.log( \frac{cosx + sinx}{cosx - sinx} )

We use by parts method to solve this integral

∫udv = uv - ∫vdu

Here,using ILATE rule logarithm is taken as u and trigonometric function is taken as dv.Therefore we get,

u = log( \frac{cosx + sinx}{cosx - sinx} ) \:  \\ dv = cos2x =  > v = ∫cos2x dx\\  =  \frac{sin2x}{2}

Substituting these in the by parts relation,we get the following

I  = log( \frac{cosx + sinx}{cosx - sinx} ) \frac{sin2x}{2}  - ∫ \frac{sin2x}{2}  \times ( \frac{cosx - sinx}{cosx + sinx} ) \times ( \frac{(cosx  -  sinx)( - sinx  +  cosx) - (cosx + sinx)( - sinx - cosx)}{(cosx - sinx) {}^{2} } ) dx

By simplifying the above expression we get the following,

I =  \frac{sin2x}{2} log \frac{cosx + sinx}{cosx - sinx}  - ∫tan2x.dx \\  = \frac {sin2x}{2} log \frac{cosx + sinx}{cosx - sinx}  -  \frac{1}{2} log(sec2x) + c

Therefore,the required integral is

I = \frac {sin2x}{2} log \frac{cosx + sinx}{cosx - sinx}-\frac{1}{2}log(sec2x) + c

Where C is some integration constant

#SPJ2

Similar questions