English, asked by chemistrylavoisier38, 3 months ago

integrate (√{cot x} + √{tan x})
thank you @damseldevil for answering this

can you answer this also?​

Answers

Answered by Anonymous
110

Question:-

\displaystyle\sf\int\sqrt{cot\:x}+\sqrt{tan\:x}\:dx

AnSwEr:-

\displaystyle\sf\int\sqrt{tan\:x}(1+cot\:x)\:dx

now use the concept of substitution

  • Put tan x = t²

\sf\implies sec^2x\:dx=2t\:dt

\sf\implies dx = \dfrac{2t}{1+t^4} \:\:\bf [ \because 1 + tan^2x = sec^2x]

\displaystyle\sf\therefore I = \int t\left(1+\dfrac{1}{t^2}\right)\dfrac{2t}{(1+t^4)}\:dt

\displaystyle\sf\implies I = 2 \int\dfrac{t^2+1}{t^4+1}\:dt

on dividing numerator and denominator by in RHS, we get

\displaystyle\sf I = 2\int\dfrac{\left(1+\dfrac{1}{t^2}\right)}{\left(t^2+\dfrac{1}{t^2}\right)}\:dt

\displaystyle\sf = 2\int \dfrac{\left(1+\dfrac{1}{t^2}\right)}{\left(t^2-\dfrac{1}{t^2}\right)^2+2}\:dt

again use concept of substitution

  • put t - 1/t = y

\sf\implies\left(1+\dfrac{1}{t^2}\right)dt = dy

\displaystyle\sf \therefore I = 2\int\dfrac{dy}{y^2+(\sqrt{2})^2}

\sf\implies I = \sqrt{2}\:tan^{-1}\:\dfrac{y}{\sqrt{2}}+C

\sf = \sqrt{2}\:tan^{-1}\:\dfrac{\left(t-\dfrac{1}{t}\right)}{\sqrt{2}} + C \;\;\bf \left[ \because y = t - \dfrac{1}{t}\right]

\sf = \sqrt{2}\:tan^{-1}\:\left(\dfrac{t^2-1}{\sqrt{2}\:t}\right)+C

  • put value of t

\boxed{\sf \implies I = \sqrt{2}\:tan^{-1}\left(\dfrac{tan\:x-1}{\sqrt{2}\:tan\:x}\right)+C}

Answered by Anonymous
41

Answer:

THANKS ALOT DEMSEL DEVIL

WILL YOU BE MY FRIEND...

Similar questions