Math, asked by dmehta052, 9 months ago

integrate dx/3+cosx​

Answers

Answered by rajeevr06
0

Answer:

we know that

cos \: 2x =  \frac{ 1 -  {tan}^{2}x }{1 +  {tan}^{2} x}

so integration of

 \frac{dx}{3 +  \frac{1 -  {tan}^{2} \frac{x}{2}  }{1 +  {tan}^{2} \frac{x}{2}  } }  =  \frac{ {sec}^{2} \frac{x}{2}dx  }{4 + 2 {tan}^{2}  \frac{x}{2} } .........(i)

Let

 \tan( \frac{x}{2} )  = t

 \frac{1}{2}  {sec}^{2} ( \frac{x}{2} )dx = dt

from (i), integration of

 \frac{2dt}{4 + 2 {t}^{2} }  =  \frac{dt}{2 +  {t}^{2} }  =

 \frac{1}{ \sqrt{2} }  \tan {}^{ - 1} ( \frac{t}{ \sqrt{2} } )  + c

replacing t, we get

 \frac{1}{ \sqrt{2} }  {tan}^{ - 1}   (\frac{ \tan( \frac{x}{2} ) }{ \sqrt{2} } ) + c

Ans.

Similar questions