Math, asked by kkatiyar480, 3 months ago

integrate DX/sin x+ sin2x​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have ,

 \int \frac{dx}{ \sin(x)  +  \sin(2x) }  \\

  = \int \frac{dx}{ \sin(x)(1  +  2\cos(x)) }  \\

  = \int \frac{dx}{  \frac{2 \tan( \frac{x}{2} ) }{1 +  \tan^{2} ( \frac{x}{2} ) } (1  +  2 \frac{(1 -  \tan^{2} ( \frac{x}{2} ) )}{(1 +  \tan ^{2} ( \frac{x}{2} ) )} ) }  \\

  = \int \frac{dx}{  \frac{2 \tan( \frac{x}{2} ) }{1 +  \tan^{2} ( \frac{x}{2} ) }. \frac{(3-  \tan^{2} ( \frac{x}{2} ) )}{(1 +  \tan ^{2} ( \frac{x}{2} ) )} }  \\

 =  \int \frac{(1 +  \tan ^{2} ( \frac{x}{2} ) )( \sec^{2} ( \frac{x}{2} )) dx}{2 \tan( \frac{x}{2} )(3 -  \tan ^{2} ( \frac{x}{2} ))  }  \\

Putting  tan(\frac{x}{2})=t

 \implies \frac{1}{2}sec^{2}(\frac{x}{2}) dx= dt

 =  \int \frac{(1 + t ^{2} )dt}{ t(3 -  t^{2}   )}  \\

 =  \int \frac{(1 + t ^{2} )dt}{ t( \sqrt{3}  -  t )( \sqrt{3} + t) }  \\

 =  \int \frac{dt}{3t}  +  \int \frac{2dt}{3( \sqrt{3} - t) }   -   \int \frac{2dt}{3( \sqrt{3}  + t)}  \\

 =   \frac{1}{3} \int \frac{dt}{t}  + \frac{2}{3}   \int \frac{dt}{( \sqrt{3} - t) }   -  \frac{2}{3}   \int \frac{dt}{( \sqrt{3}  + t)}  \\

 =  \frac{1}{3}  ln(t)  +  \frac{2}{3}  ln( \sqrt{3}  - t)  -  \frac{2}{3}  ln( \sqrt{3} + t )  + c \\

 =  \frac{1}{3}  ln( \tan( \frac{x}{2} ) )  +  \frac{2}{3}  ln( \sqrt{3}  -  \tan( \frac{x}{2} ) )  -  \frac{2}{3}  ln( \sqrt{3} +  \tan( \frac{x}{2} ) )  + c \\

Similar questions