English, asked by asad1615, 6 months ago

integrate (e^3a log x + e^3x log a) dx.​

Answers

Answered by Anonymous
59

Given that

\displaystyle\sf y = \int e^{3a \cdot log \ x} + e^{3x \cdot log \ a} dx

Solution:-

we know that \sf a^{mn} = (a^m)^n

\displaystyle\sf y = \int (e^{3a \cdot log \ x} + e^{3x \cdot log \ a}) dx

\displaystyle\sf = \int e^{(log \ x)3a} dx + \int e^{(log \ a)3x} dx

\displaystyle\sf = \int x^{3a} dx + \int a^{3x} dx

\boxed{\sf = \dfrac{x^{3a} +1}{3a + 1} + \dfrac{1}{3} a^{3x} \ log \ a + C}

know more!

\boxed{\boxed{\begin{minipage}{4cm}\displaystyle\circ\sf\:\int{1\:dx}=x+c\\\\\circ\sf\:\int{a\:dx}=ax+c\\\\\circ\sf\:\int{x^n\:dx}=\dfrac{x^{n+1}}{n+1}+c\\\\\circ\sf\:\int{sin\:x\:dx}=-cos\:x+c\\\\\circ\sf\:\int{cos\:x\:dx}=sin\:x+c\\\\\circ\sf\:\int{sec^2x\:dx}=tan\:x+c\\\\\circ\sf\:\int{e^x\:dx}=e^x+c\end{minipage}}}

note: if you're unable to see the answer properly, then see answer at https://brainly.in/

see answer at: https://brainly.in/question/31886338

Similar questions