integrate (e^-x + e^-2x) dx / x from 0 to infinity
Answers
Answer:
How do I integrate (x^2) × (e^-x) with limits 0 to infinite?
Profile photo for SusaiRaj
SusaiRaj
Answered 1 year ago
We know that integ. udv= uv - integ.vdu
Let I = integ.x^2.e^(-x) dx
Let u = x^2 => du = 2x dx
dv = e^(-x) dx => v = -e^(-x)
Applying the above formula we get
I = -x^2.e^(-x) +integ.e^(-x) 2x dx
= -x^2.e^(-x) +2.I1 where I1 = integ.xe^(-x)dx..(1)
I1 = integ. x e(-x) dx
Let u = x => du = dx , dv = e^(-x)dx => v = -e^(-x)
Applying the above formula
I1 = x e^(-x) + integ.e^(-x) dx
= xe^(-x) - e^(-x) + c . Using this in (1) we get
I=-x^2.e^(-x) + 2{xe^(-x) - e^(-x)} + c
= x^2.e^(-x)+2x.e^(-x) - e^(-x) + c.
OR by using the formula
udv = uv - u'v1 + u''v2 - u'''v3….. we can directly write the answer by take ng u= x^2 and ..dv=e^(-x) dx. In the above u' stands for du/dx and v1 stands for integ .v dx
Step-by-step explanation:
First without the bounds:
I=∫e−2xdx
With u=−2x and du=−2dx:
I=−12∫e−2x(−2dx)=−12∫eudu=−12eu+C
Thus:
I=−12e−2x+C=−12e2x+C
Applying the bounds:
J=∫∞0e−2xdx=[−12e2x]∞0
Evaluating and taking the limit at infinity:
J=[