Math, asked by Dhruvchandoliya4738, 1 year ago

Integrate : ex(x2+1/(x+1)2)dx

Answers

Answered by Abhishek1459
53
this is the solution
Attachments:
Answered by roshinik1219
17

Given:

             I &= \int \frac{e^x \left( x^2 + 1 \right)}{\left( x + 1 \right)^2} \,\mathrm dx

To Find:

  • We have to integrate the given function.

Solution:

        Let     I &= \int \frac{e^x \left( x^2 + 1 \right)}{\left( x + 1 \right)^2} \,\mathrm dx

Adding and subtracting 2x

                I&= \int \frac{e^x \left(\left( x + 1 \right)^2 - 2x\right)}{\left( x + 1 \right)^2} \,\mathrm dx

                    &= \int \frac{e^x \left( x + 1 \right)^2}{\left( x + 1 \right)^2} \,\mathrm dx - 2 \int \frac{e^x\left( x + 1 \right)}{\left( x + 1 \right)^2} \,\mathrm dx + 2 \int \frac{e^x}{\left( x + 1 \right)^2} \,\mathrm dx \\ \\&= \int e^x \,\mathrm dx - 2 \int \frac{e^x}{x + 1} \,\mathrm dx + 2 \int \frac{e^x}{\left( x + 1 \right)^2} \,\mathrm dx \\

                 I &= e^x - 2 \left( \int \frac{e^x}{x + 1} \,\mathrm dx - \int \frac{e^x}{\left( x + 1 \right)^2} \,\mathrm dx \right) \end{align}

We use integration by parts on the first of these integrals, which uses the following general rule:

                        [\int u \,\mathrm dv = uv - \int v du\\u = \frac{1}{x+1} \\v =e^x

   \therefore \displaystyle \int \frac{e^x}{x+1} \,\mathrm dx = \frac{e^x}{x+1} + \int \frac{e^x}{\left(x+1\right)^2} \,\mathrm dx

                     I&= e^x - 2 \left( \frac{e^x}{x+1} + \int \frac{e^x}{\left(x+1\right)^2} \,\mathrm dx - \int \frac{e^x}{\left( x + 1 \right)^2} \,\mathrm dx \right) \\

                         &= e^x - \frac{2e^x}{x+1} \\\\ &= \frac{e^x\left(x+1\right) - 2e^x}{x+1} \\

                        I&= \boxed{ \frac{e^x\left(x-1\right)}{x+1} + C } \end{align}

Thus,

                \int \frac{e^x \left( x^2 + 1 \right)}{\left( x + 1 \right)^2} \,\mathrm dx &= \boxed{ \frac{e^x\left(x-1\right)}{x+1} + C } \end{align}

Similar questions