Math, asked by sanvishukla, 1 year ago

integrate-->
 \frac{cosx}{(1 + sinx)^{2} }

Answers

Answered by deepvrm
1

Answer:

just substitute 1+sinx =t and differentiate both side and put the the value of t in the function to solve further

Attachments:
Answered by rajkvaid83
0

Answer:

 \frac{ \cos(x) }{ 1 + \sin(x^{2} ) }  \\

 =  \frac{ \cos(x) }{ {1 +  \sin(x) }^{2} }  \times  \frac{1 -  { \sin(x) }^{2} }{1 -  { \sin(x) }^{2} }

 =  \frac{cos \: x \:  \times 1 -  {sin}^{2}x }{1+ {sin}^{2}x \times 1 -  {sin}^{2}x  }

 {sin}^{2}x  +  {cos}^{2}x  = 1

 =  \frac{  \cos(x)  \times { \cos(x) }^{2} }{ {cos}^{2}x }  \\  \ = cos(x)

Similar questions