Integrate log tanx Lim 0 to pie/2
Answers
Answered by
10
Best Answer
Note : ∫ [ 0, a ] ƒ(x) dx = ∫ [ 0, a ] ƒ(a-x) dx ....... (1)
_______________________________
I = ∫ [0,π/2] ln ( tan x ) dx .................................. (2)
From (1), replacing (x) by (π/2 - x),
I = ∫ [0,π/2] ln [ tan (π/2 - x) ] dx
..= ∫ [0,π/2] ln ( cot x ) dx
..= ∫ [0,π/2] ln [ ( tan x )ֿ¹ ] dx
..= - { ∫ [0,π/2] ln ( tan x ) dx }
..= -I .............. from (2)
Thus,
I = -I ∴ 2·I = 0 ∴ I = 0 .................. Ans.
________________________
Happy To Help !
________________________
Plzzzzz mark me brainlist
Note : ∫ [ 0, a ] ƒ(x) dx = ∫ [ 0, a ] ƒ(a-x) dx ....... (1)
_______________________________
I = ∫ [0,π/2] ln ( tan x ) dx .................................. (2)
From (1), replacing (x) by (π/2 - x),
I = ∫ [0,π/2] ln [ tan (π/2 - x) ] dx
..= ∫ [0,π/2] ln ( cot x ) dx
..= ∫ [0,π/2] ln [ ( tan x )ֿ¹ ] dx
..= - { ∫ [0,π/2] ln ( tan x ) dx }
..= -I .............. from (2)
Thus,
I = -I ∴ 2·I = 0 ∴ I = 0 .................. Ans.
________________________
Happy To Help !
________________________
Plzzzzz mark me brainlist
Similar questions