Integrate ( sin^4x + cos^4x ) / ( sin^3x + cos^3x )
Answers
Answered by
19
Integration of f(x) dx
= ∫ (Sin⁴ x + Cos⁴ x) dx / (Sin³ x + Cos³ x)
Let u = sin x - cos x.
du = (sin x + cos x) dx
u² = (sin x - cosx)² = 1 - 2 sinx cosx
sin x * cos x = (1 - u²)/2
Answer is
I = Sin x - Cos x + 1/6√2 * Ln | (√2+ Sinx - cosx)/(√2 - sinx + cosx) | - 2/3 * Tan⁻¹ (sinx+cosx) + K
OR, Sin x - Cos x + 1/3√2 * Ln | Tan(3π/8 - x/2) | -2/3 * Tan⁻¹ (sinx - cosx) + K
= ∫ (Sin⁴ x + Cos⁴ x) dx / (Sin³ x + Cos³ x)
Let u = sin x - cos x.
du = (sin x + cos x) dx
u² = (sin x - cosx)² = 1 - 2 sinx cosx
sin x * cos x = (1 - u²)/2
Answer is
I = Sin x - Cos x + 1/6√2 * Ln | (√2+ Sinx - cosx)/(√2 - sinx + cosx) | - 2/3 * Tan⁻¹ (sinx+cosx) + K
OR, Sin x - Cos x + 1/3√2 * Ln | Tan(3π/8 - x/2) | -2/3 * Tan⁻¹ (sinx - cosx) + K
kvnmurty:
:-)
Similar questions