Integrate ( sin^4x + cos^4x ) / ( sin^3x + cos^3x )
Answers
Answered by
19
Integration of f(x) dx
= ∫ (Sin⁴ x + Cos⁴ x) dx / (Sin³ x + Cos³ x)
Let u = sin x - cos x.
du = (sin x + cos x) dx
u² = (sin x - cosx)² = 1 - 2 sinx cosx
sin x * cos x = (1 - u²)/2
![f(x)=\frac{sin^4x+cos^4x}{sin^3+cos^3x}\\\\=cosx+sinx-\frac{(cos^2x+sin^2x)sinx \: cosx}{(sinx+cosx)(sin^2x-sinx \: cosx+cos^2)}\\\\2nd \: term*dx=-\frac{sinx \: cosx}{(sinx+cosx)(1-sinx * cosx)}dx\\\\=-\frac{(1-u^2)/2}{(sinx+cosx)^2)(1-\frac{1-u^2}{2})}du\\\\=-\frac{1-u^2}{(1+1-u^2)(1+u^2)}du\\\\=\frac{1}{3} [ \frac{1}{2-u^2} -\frac{2}{1+u^2} ]du\\\\Integral \: is=\frac{1}{3*2\sqrt{2}}Ln|\frac{\sqrt{2}+u}{\sqrt{2}-u} |-\frac{2}{3}Tan^{-1}u+K f(x)=\frac{sin^4x+cos^4x}{sin^3+cos^3x}\\\\=cosx+sinx-\frac{(cos^2x+sin^2x)sinx \: cosx}{(sinx+cosx)(sin^2x-sinx \: cosx+cos^2)}\\\\2nd \: term*dx=-\frac{sinx \: cosx}{(sinx+cosx)(1-sinx * cosx)}dx\\\\=-\frac{(1-u^2)/2}{(sinx+cosx)^2)(1-\frac{1-u^2}{2})}du\\\\=-\frac{1-u^2}{(1+1-u^2)(1+u^2)}du\\\\=\frac{1}{3} [ \frac{1}{2-u^2} -\frac{2}{1+u^2} ]du\\\\Integral \: is=\frac{1}{3*2\sqrt{2}}Ln|\frac{\sqrt{2}+u}{\sqrt{2}-u} |-\frac{2}{3}Tan^{-1}u+K](https://tex.z-dn.net/?f=f%28x%29%3D%5Cfrac%7Bsin%5E4x%2Bcos%5E4x%7D%7Bsin%5E3%2Bcos%5E3x%7D%5C%5C%5C%5C%3Dcosx%2Bsinx-%5Cfrac%7B%28cos%5E2x%2Bsin%5E2x%29sinx+%5C%3A+cosx%7D%7B%28sinx%2Bcosx%29%28sin%5E2x-sinx+%5C%3A+cosx%2Bcos%5E2%29%7D%5C%5C%5C%5C2nd+%5C%3A+term%2Adx%3D-%5Cfrac%7Bsinx+%5C%3A+cosx%7D%7B%28sinx%2Bcosx%29%281-sinx+%2A+cosx%29%7Ddx%5C%5C%5C%5C%3D-%5Cfrac%7B%281-u%5E2%29%2F2%7D%7B%28sinx%2Bcosx%29%5E2%29%281-%5Cfrac%7B1-u%5E2%7D%7B2%7D%29%7Ddu%5C%5C%5C%5C%3D-%5Cfrac%7B1-u%5E2%7D%7B%281%2B1-u%5E2%29%281%2Bu%5E2%29%7Ddu%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B3%7D+%5B+%5Cfrac%7B1%7D%7B2-u%5E2%7D+-%5Cfrac%7B2%7D%7B1%2Bu%5E2%7D+%5Ddu%5C%5C%5C%5CIntegral+%5C%3A+is%3D%5Cfrac%7B1%7D%7B3%2A2%5Csqrt%7B2%7D%7DLn%7C%5Cfrac%7B%5Csqrt%7B2%7D%2Bu%7D%7B%5Csqrt%7B2%7D-u%7D+%7C-%5Cfrac%7B2%7D%7B3%7DTan%5E%7B-1%7Du%2BK)

Answer is
I = Sin x - Cos x + 1/6√2 * Ln | (√2+ Sinx - cosx)/(√2 - sinx + cosx) | - 2/3 * Tan⁻¹ (sinx+cosx) + K
OR, Sin x - Cos x + 1/3√2 * Ln | Tan(3π/8 - x/2) | -2/3 * Tan⁻¹ (sinx - cosx) + K
= ∫ (Sin⁴ x + Cos⁴ x) dx / (Sin³ x + Cos³ x)
Let u = sin x - cos x.
du = (sin x + cos x) dx
u² = (sin x - cosx)² = 1 - 2 sinx cosx
sin x * cos x = (1 - u²)/2
Answer is
I = Sin x - Cos x + 1/6√2 * Ln | (√2+ Sinx - cosx)/(√2 - sinx + cosx) | - 2/3 * Tan⁻¹ (sinx+cosx) + K
OR, Sin x - Cos x + 1/3√2 * Ln | Tan(3π/8 - x/2) | -2/3 * Tan⁻¹ (sinx - cosx) + K
kvnmurty:
:-)
Similar questions