Math, asked by anandhuullas2020, 5 months ago

integrate sin x / root 4 cos x^2 -1​

Answers

Answered by mathdude500
5

\huge\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Answer}}}}}}}} \\ \large\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Your~answer↓}}}}}}}}

To evaluate

 ∫  \frac{sinx}{ \sqrt{4 {cos}^{2}x - 1 } } dx

Formula used :-

 ∫  \frac{dx}{ \sqrt{ {x}^{2} -  {a}^{2}  } }  =  log(x +  \sqrt{ {x}^{2}  -  {a}^{2} } )  + c

Solution:-

 ∫  \frac{sinx}{ \sqrt{4 {cos}^{2}x - 1 } }  \\ \small\bold\red{put \: cosx \:  = y} \\ \small\bold\red{ - sinx =  \frac{dy}{dx} } \\ \small\bold\red{ =  >  \: sinx \: dx \:  =  - dy}

so \: integral \: reduces \: to \\   = ∫  \frac{ - dy}{ \sqrt{4 {y}^{2} - 1 } }  \\  =  -  \frac{1}{2}  ∫  \frac{dy}{ \sqrt{ {y}^{2}  -  \frac{1}{4} } }  \\  =  -  \frac{1}{2}  ∫  \frac{dy}{ \sqrt{ {y}^{2} -  {( \frac{1}{2}) }^{2}  } }  \\  =  -  \frac{1}{2}  log |y +  \sqrt{ ({y}^{2}  -  \frac{1}{4}) } |  + c \\  =  -  \frac{1}{2}  log |y +  \sqrt{( \frac{ {4y}^{2}  - 1}{4} )} |  + c \\  =  -  \frac{1}{2}  log | \frac{2y +  \sqrt{ {4y}^{2}  - 1} }{2} |  + c \\  =  -  \frac{1}{2} ( log |2y +  \sqrt{( {4y}^{2}  - 1)} |  -  log(2) ) + c \\  =  -  \frac{1}{2}  log(y +  \sqrt{ {4y}^{2}  - 1} )  -  \frac{1}{2}  log(2)  + c \\  =  -  \frac{1}{2}  log(cosx +  \sqrt{ {4cos}^{2}x - 1 } )  + d

\red{\textsf{(✪MARK BRAINLIEST✿)}} \\ \huge\fcolorbox{aqua}{aqua}{\red{FolloW ME}}

\huge \fcolorbox{black}{cyan}{♛Hope it helps U♛}

Similar questions