Math, asked by profxxx, 11 months ago

integrate
some one pls help its urgent ​

Attachments:

Answers

Answered by ShresthaTheMetalGuy
1

Answer:

∫ \frac{ \sqrt{2} \sin(x)  }{ \sin(x -  \frac{\pi}{4} ) } d(x)

 =  \sqrt{2} ∫ \frac{ \sin(x) }{ \sin(x -  \frac{\pi}{4} ) } d(x)

 =  \sqrt{2} ∫ \frac{ \sin(x -  \frac{\pi}{4} +  \frac{\pi}{4}  ) }{ \sin(x -  \frac{\pi}{4} ) }

 =  \sqrt{2} ∫[\cos( \frac{\pi}{4} )  +  \cot(x -  \frac{\pi}{4} )  \sin( \frac{\pi}{4} ) ]d(x)

 =  \sqrt{2} . \frac{1}{ \sqrt{2} } x  +  \sqrt{2} . \frac{1}{ \sqrt{2} } ln | \sin(x -  \frac{\pi}{4} ) |  + c

So,  = x + ln | \sin(x -  \frac{\pi}{4} ) |  + c

Similar questions