Math, asked by leenawaghmare44999, 11 months ago

LA
1. The square of side 12 cm is cut on the diagonal. Find the perimeter of one
(2017)
triangle so formed.
mm 101? + 2)cm (4) 12 (2+ 2) cm​

Answers

Answered by abhi569
41

Answer:

12( 2 + √2 ) cm

Step-by-step explanation:

Suppose of a square of length 12 cm.

Since, adjacent sides of square intersect each other at 90°, using Pythagoras theorem length of the diagonal can be found.

= > diagonal^2 = ( 12 cm )^2 + ( 12 cm )^2

= > diagonal^2 = 12^2 x 2 cm^2

= > diagonal = 12√2 cm

Perimeter of the triangle so formed :

= > side of square + side of square + diagonal of square

= > 12 cm + 12 cm + 12√2 cm

= > 12 cm x 2 + 12√2 cm

= > 12( 2 + √2 ) cm

Answered by TheBrainlyWizard
113

\bf{\underline{\underline{Given}}}

\mathsf{\bigstar\: Side\:of\:square = 12\:cm}\\ \\

\bf{\underline{\underline{To\:find}}}

\mathsf{\bigstar\: perimeter\:of\:one\:triangle}\\ \\

\bf{\underline{\underline{Solution}}}

\mathsf{let\:us\:consider\:a\:triangle\:BCD}

\mathsf{ from\:the \: given\: square \:ABCD}

\mathsf{BC = CD = 12\: cm}

\mathsf{And \: \angle C = 90°}\\ \\

\mathsf{By\:pythagoras\:theorem}

\mathtt{\implies\: BD^{2} = BC^{2} + CD^{2} }

\mathtt{\implies\: BD^{2} = 12^{2} + 12^{2} }

\mathtt{\implies\: BD^{2} = 144 + 144 }

\mathtt{\implies\: BD^{2} = 288 }

\mathtt{\implies\: BD = \sqrt{288}}

\mathtt{\implies\: BD = 12\: \sqrt{2}\: cm}\\

\bf{\underline{\underline{We\:know\:that}}}

\mathsf{Perimeter\:of\:triangle = Sum\: of \: three\: sides}

\mathtt{\implies\: BC + CD + BD}

\mathtt{\implies\: 12\:cm + 12\:cm + 12\: \sqrt{2}\: cm }

\mathtt{\implies\: 24\:cm + 12\: \sqrt{2}\: cm }

Taking 12 common

\fbox{\Large{\mathtt{\green{\implies\:  12(2 + \sqrt{2})\: cm }}}}

Attachments:
Similar questions