integrate (sqrt tanx+ sqrt cotx) dx
KushKumar:
is this square root??
Answers
Answered by
21
Integration of sqrt(tan x) + sqrt(cot x) dx
![f(x)=\sqrt{tan x}+\sqrt{cot x}=\frac{sin x+cos x}{\sqrt{sin x\ cos x}}\\\\=\sqrt{2}*\frac{sinx+cosx}{\sqrt{sin2x}}\\\\Let\ t^2=sin2x\ ;; \ \ 2t\ dt=2cos2x\ dx=2\sqrt{1-t^4}dx\\\\I=\sqrt{2}\int {f(x)} \, dx=\sqrt{2}\int {\frac{\sqrt{1+t^2}}{t}\frac{t}{\sqrt{1-t^4}}} \, dt=\sqrt{2}\int {\frac{1}{\sqrt{1-t^2}}} \, dt\\\\=\sqrt2\ Sin^{-1}t+K=\sqrt2\ Sin^{-1}(\sqrt{sin 2x})+K\\\\=\sqrt{2}\ Tan^{-1}(\frac{cosx-sinx}{\sqrt{sin2x}})+K\\\\=\sqrt2\ Tan^{-1} (\frac{\sqrt{cotx}-\sqrt{tanx}}{\sqrt2})+K f(x)=\sqrt{tan x}+\sqrt{cot x}=\frac{sin x+cos x}{\sqrt{sin x\ cos x}}\\\\=\sqrt{2}*\frac{sinx+cosx}{\sqrt{sin2x}}\\\\Let\ t^2=sin2x\ ;; \ \ 2t\ dt=2cos2x\ dx=2\sqrt{1-t^4}dx\\\\I=\sqrt{2}\int {f(x)} \, dx=\sqrt{2}\int {\frac{\sqrt{1+t^2}}{t}\frac{t}{\sqrt{1-t^4}}} \, dt=\sqrt{2}\int {\frac{1}{\sqrt{1-t^2}}} \, dt\\\\=\sqrt2\ Sin^{-1}t+K=\sqrt2\ Sin^{-1}(\sqrt{sin 2x})+K\\\\=\sqrt{2}\ Tan^{-1}(\frac{cosx-sinx}{\sqrt{sin2x}})+K\\\\=\sqrt2\ Tan^{-1} (\frac{\sqrt{cotx}-\sqrt{tanx}}{\sqrt2})+K](https://tex.z-dn.net/?f=f%28x%29%3D%5Csqrt%7Btan+x%7D%2B%5Csqrt%7Bcot+x%7D%3D%5Cfrac%7Bsin+x%2Bcos+x%7D%7B%5Csqrt%7Bsin+x%5C+cos+x%7D%7D%5C%5C%5C%5C%3D%5Csqrt%7B2%7D%2A%5Cfrac%7Bsinx%2Bcosx%7D%7B%5Csqrt%7Bsin2x%7D%7D%5C%5C%5C%5CLet%5C+t%5E2%3Dsin2x%5C+%3B%3B+%5C+%5C+2t%5C+dt%3D2cos2x%5C+dx%3D2%5Csqrt%7B1-t%5E4%7Ddx%5C%5C%5C%5CI%3D%5Csqrt%7B2%7D%5Cint+%7Bf%28x%29%7D+%5C%2C+dx%3D%5Csqrt%7B2%7D%5Cint+%7B%5Cfrac%7B%5Csqrt%7B1%2Bt%5E2%7D%7D%7Bt%7D%5Cfrac%7Bt%7D%7B%5Csqrt%7B1-t%5E4%7D%7D%7D+%5C%2C+dt%3D%5Csqrt%7B2%7D%5Cint+%7B%5Cfrac%7B1%7D%7B%5Csqrt%7B1-t%5E2%7D%7D%7D+%5C%2C+dt%5C%5C%5C%5C%3D%5Csqrt2%5C+Sin%5E%7B-1%7Dt%2BK%3D%5Csqrt2%5C+Sin%5E%7B-1%7D%28%5Csqrt%7Bsin+2x%7D%29%2BK%5C%5C%5C%5C%3D%5Csqrt%7B2%7D%5C+Tan%5E%7B-1%7D%28%5Cfrac%7Bcosx-sinx%7D%7B%5Csqrt%7Bsin2x%7D%7D%29%2BK%5C%5C%5C%5C%3D%5Csqrt2%5C+Tan%5E%7B-1%7D+%28%5Cfrac%7B%5Csqrt%7Bcotx%7D-%5Csqrt%7Btanx%7D%7D%7B%5Csqrt2%7D%29%2BK)
We can find Integral of √cot x or of √tan x or of √cot x - √tan x
In the same manner as above.
We can find Integral of √cot x or of √tan x or of √cot x - √tan x
In the same manner as above.
Answered by
12
Answer:(sqrt2)arcsin(sinx-cosx)+C
Step-by-step explanation:
Attachments:
![](https://hi-static.z-dn.net/files/d3f/1513856c44ab0fdce43f10b7cf755bf6.jpg)
Similar questions