Math, asked by kanishkmahant, 1 year ago

Integrate tan^2(2x+5) dx

Answers

Answered by kaushik05
125

 \huge \mathfrak{solution}

To find:

 \int \:  {tan}^{2} (2x + 5) \: dx \\

As we know that :

 { \sec }^{ ^{2} }  \theta \:  -  { \tan}^{2}  \theta = 1 \\ =   >  \tan ^{2} \theta =  { \sec}^{2}  \theta \:  - 1

 \star \int \:  {sec}^{2} (2x + 5)dx -  \int \: 1 \: dx \\

Here :

Let

=> 2x+5 = t

=> 2dx= dt

=> dx= dt/2

 \star \int \:  {sec}^{2} (t) \frac{dt}{2}  -  \int \: 1dx \\  \\  \star \:  \frac{1}{2}  \int  {sec}^{2} t \: dt -  \int \: 1dx \\  \\  \star \:  \frac{1}{2} tan \: (t) - x + c

Now , put the value of (t)

 \star \:  \frac{1}{2} tan(2x + 5) - x + c \\

Formula used :

 \leadsto   \red{ \int}\boxed{  \bold  { {x}^{n}dx  =  \frac{ {x}^{n + 1} }{n + 1}} + c } \\

 \leadsto  \boxed{ \bold{ \green{\int \:  {sec}^{2} x \: dx \:  = tan \: x \:  + c}}}

Answered by ra8755jnish
1

Answer:

plz find the attached file

Attachments:
Similar questions