Math, asked by SƬᏗᏒᏇᏗƦƦᎥᎧƦ, 3 months ago

Integrate:–
\Huge{{\large{∫} \frac{dx}{ \sqrt{x \sqrt{x} - x {}^{2}  } }}}

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle\int \: \dfrac{dx}{ \sqrt{x \sqrt{x}  -  {x}^{2} } }

\rm \:  \:  =  \: \:\displaystyle\int \: \dfrac{dx}{ \sqrt{x \sqrt{x}  - x \sqrt{x} \sqrt{x}  } }

\rm \:  \:  =  \: \:\displaystyle\int \:\dfrac{dx}{ \sqrt{x \sqrt{x}(1 -  \sqrt{x} )} }

\rm \:  \:  =  \: \:\displaystyle\int \:\dfrac{dx}{ \sqrt{x \sqrt{x}}  \sqrt{1 -  \sqrt{x} } }

\rm \:  \:  =  \: \:\displaystyle\int \:\dfrac{dx}{  { \bigg(x \bigg)}^{ \dfrac{3}{4} } \sqrt{1 -  \sqrt{x} } }

\red{\rm :\longmapsto\:Put  \:  \sqrt{1 -  \sqrt{x} } = y}

\red{\rm :\longmapsto\:1 -  \sqrt{x} =  {y}^{2}}

\red{\rm :\longmapsto\:1 - {y}^{2} =\sqrt{x}}

\red{\rm :\longmapsto\:x =  {(1 -  {y}^{2} )}^{2}}

\red{\rm :\longmapsto\:dx =  2{(1 -  {y}^{2} )}( - 2y) \: dy}

\red{\rm :\longmapsto\:dx =   - 4y{(1 -  {y}^{2} )} \: dy}

So, on substituting all these values, we get

\rm \:  \:  =  \: \:\displaystyle\int \:\dfrac{ - 4  \: \cancel y \: (1 -  {y}^{2}) \: dy }{ {\bigg( {(1 -  {y}^{2}) }^{2} \bigg) }^{\dfrac{3}{4} }  \times \cancel y}

\rm \:  \:  =  \: \:\displaystyle\int \:\dfrac{ - 4(1 -  {y}^{2}) \: dy }{ {\bigg( {1 -  {y}^{2}}\bigg) }^{\dfrac{3}{2} }}

\rm \:  \:  =  4 \: \:\displaystyle\int \:\dfrac{ - 1}{ \sqrt{1 -  {y}^{2} } } \:  dy

 \rm \:  \:  =  \:  \:  4 \:  {cos}^{ - 1} y \:  +  \: c

 \rm \:  \:  =  \:  \:  4 \:  {cos}^{ - 1}  \sqrt{1 -  \sqrt{x} } \:  +  \: c

Hence,

\rm :\longmapsto\:\displaystyle\int \: \dfrac{dx}{ \sqrt{x \sqrt{x}  -  {x}^{2} } }  \rm =4 \:  {cos}^{ - 1}  \sqrt{1 -  \sqrt{x} } \:  +  \: c

Additional Information :-

\rm :\longmapsto\:\displaystyle\int\dfrac{dx}{ {x}^{2} +  {a}^{2}  } = \dfrac{1}{a} {tan}^{ - 1}\dfrac{x}{a} + c

\rm :\longmapsto\:\displaystyle\int\dfrac{dx}{ {x}^{2} -  {a}^{2}  } = \dfrac{1}{2a} \:  {log} \: \dfrac{x - a}{x + a}  \: +  \: c

\rm :\longmapsto\:\displaystyle\int \: \dfrac{dx}{ \sqrt{ {a}^{2} -  {x}^{2}}}  =  {sin}^{ - 1}\dfrac{x}{a} + c

\rm :\longmapsto\:\displaystyle\int \: \dfrac{dx}{ \sqrt{ {x}^{2} -  {a}^{2}}}  =  log | \: x +  \sqrt{ {x}^{2}  -  {a}^{2} } \:  |  + c

\rm :\longmapsto\:\displaystyle\int \: \dfrac{dx}{ \sqrt{ {x}^{2}  + {a}^{2}}}  =  log | \: x +  \sqrt{ {x}^{2} + {a}^{2} } \:  |  + c

Similar questions