integrate
Answers
To Integrate :
Here ,
• we use the substitution method :
Let ,
Differentiate w.r.t x both sides ,
put the values :
Now, put the value of t .
Formula :
To Integrate :
\begin{lgathered}\star \int \frac{ {e}^{ { \tan}^{ - 1} x} }{1 + {x}^{2} } dx \\\end{lgathered}
⋆∫
1+x
2
e
tan
−1
x
dx
Here ,
• we use the substitution method :
Let ,
\star \: { \tan}^{ - 1} x = t⋆tan
−1
x=t
Differentiate w.r.t x both sides ,
\begin{lgathered}\star \: \frac{1}{1 + {x}^{2} } = \frac{dt}{dx} \\ \\ \star \: dx = (1 + {x}^{2} )dt\end{lgathered}
⋆
1+x
2
1
=
dx
dt
⋆dx=(1+x
2
)dt
put the values :
\begin{lgathered}\implies \: \int \frac{ {e}^{t} }{1 + {x}^{2} } (1 + {x}^{2} )dt \\ \\ \implies \: \int \: {e}^{t} dt \\ \\ \implies \: {e}^{t} + c\end{lgathered}
⟹∫
1+x
2
e
t
(1+x
2
)dt
⟹∫e
t
dt
⟹e
t
+c
Now, put the value of t .
\begin{lgathered}\implies \: {e}^{ { \tan}^{ - 1}x } + c \\\end{lgathered}
⟹e
tan
−1
x
+c
Formula :
\begin{lgathered}\star \bold{ \frac{d}{dx} {tan}^{ - 1} x \: = \frac{1}{1 + {x}^{2} } } \\ \\ \star \bold{\int \: {e}^{x} dx = {e}^{x} + c}\end{lgathered}
⋆
dx
d
tan
−1
x=
1+x
2
1
⋆∫e
x
dx=e
x
+c