Math, asked by Anonymous, 6 months ago

integrate

 \int \:  \frac{ {e}^{ { tan}^{ - 1}x } }{1  +  {x}^{2} } dx \\

Answers

Answered by kaushik05
44

To Integrate :

 \star \int  \frac{ {e}^{  { \tan}^{ - 1} x} }{1 +  {x}^{2} } dx \\

Here ,

• we use the substitution method :

Let ,

 \star \:  { \tan}^{ - 1} x = t

Differentiate w.r.t x both sides ,

 \star \:  \frac{1}{1 +  {x}^{2} }  =  \frac{dt}{dx}  \\  \\  \star \: dx = (1 +  {x}^{2} )dt

put the values :

 \implies \:  \int \frac{ {e}^{t} }{1 +  {x}^{2} } (1 +  {x}^{2} )dt \\  \\  \implies \:  \int \:  {e}^{t} dt \\  \\  \implies \:  {e}^{t}  + c

Now, put the value of t .

 \implies \:  {e}^{  { \tan}^{ - 1}x }  + c \\

Formula :

 \star  \bold{  \frac{d}{dx}  {tan}^{ - 1} x \:  =  \frac{1}{1 +  {x}^{2} } } \\  \\  \star \bold{\int \:  {e}^{x} dx =  {e}^{x}  + c}

Answered by Anonymous
9

To Integrate :

\begin{lgathered}\star \int \frac{ {e}^{ { \tan}^{ - 1} x} }{1 + {x}^{2} } dx \\\end{lgathered}

⋆∫

1+x

2

e

tan

−1

x

dx

Here ,

• we use the substitution method :

Let ,

\star \: { \tan}^{ - 1} x = t⋆tan

−1

x=t

Differentiate w.r.t x both sides ,

\begin{lgathered}\star \: \frac{1}{1 + {x}^{2} } = \frac{dt}{dx} \\ \\ \star \: dx = (1 + {x}^{2} )dt\end{lgathered}

1+x

2

1

=

dx

dt

⋆dx=(1+x

2

)dt

put the values :

\begin{lgathered}\implies \: \int \frac{ {e}^{t} }{1 + {x}^{2} } (1 + {x}^{2} )dt \\ \\ \implies \: \int \: {e}^{t} dt \\ \\ \implies \: {e}^{t} + c\end{lgathered}

⟹∫

1+x

2

e

t

(1+x

2

)dt

⟹∫e

t

dt

⟹e

t

+c

Now, put the value of t .

\begin{lgathered}\implies \: {e}^{ { \tan}^{ - 1}x } + c \\\end{lgathered}

⟹e

tan

−1

x

+c

Formula :

\begin{lgathered}\star \bold{ \frac{d}{dx} {tan}^{ - 1} x \: = \frac{1}{1 + {x}^{2} } } \\ \\ \star \bold{\int \: {e}^{x} dx = {e}^{x} + c}\end{lgathered}

dx

d

tan

−1

x=

1+x

2

1

⋆∫e

x

dx=e

x

+c

Similar questions