Physics, asked by supriyoray004, 8 months ago

integrate the following.​

Attachments:

Answers

Answered by Asterinn
4

 \implies \displaystyle \int  \sqrt[3]{x} \:  \:  dx

 \implies \displaystyle \int   {x}^{ \frac{1}{3} } \:  \:  dx

We know that :-

\implies \displaystyle \int   {x}^{ n} \:  \:  dx =   \dfrac{ {x}^{n + 1} }{n + 1 }  + c

Therefore :-

\implies \displaystyle \int   {x}^{ \frac{1}{3} } \:  \:  dx =  \dfrac{ {x}^{ \frac{1}{3} + 1} }{ \dfrac{1}{3}  + 1 }  + c

\implies \displaystyle \int   {x}^{ \frac{1}{3} } \:  \:  dx =  \dfrac{ {x}^{ \frac{1 + 3}{3}} }{ \dfrac{1 + 3}{3}  }  + c

\implies \displaystyle \int   {x}^{ \frac{1}{3} } \:  \:  dx =  \dfrac{ {x}^{ \frac{4}{3}} }{ \dfrac{4}{3}  }  + c

\implies \displaystyle \int   {x}^{ \frac{1}{3} } \:  \:  dx =  \dfrac{ 3{x}^{ \frac{4}{3}} }{ {4}}  + c

where c is constant

Answer :

\implies  \dfrac{ 3{x}^{ \frac{4}{3}} }{ {4}}  + c

____________________

\large\bf\red{Additional-Information}

∫ 1 dx = x + C

∫ sin x dx = – cos x + C

∫ cos x dx = sin x + C

∫ sec2 dx = tan x + C

∫ csc2 dx = -cot x + C

∫ sec x (tan x) dx = sec x + C

∫ csc x ( cot x) dx = – csc x + C

∫ (1/x) dx = ln |x| + C

∫ ex dx = ex+ C

∫ ax dx = (ax/ln a) + C

____________________

Similar questions