Integrate the following
Answers
Step-by-step explanation:
this is simplified to 2cosx/cos²x
=2/coax
=2secx
use the formula of secx dx
Please mark me Brainliest and
EXPLANATION.
⇒ ∫2cos(x)dx/(1 - sin(x))(1 + sin(x)).
As we know that,
Formula of :
⇒ (x - y)(x + y) = x² - y².
Using this formula in equation, we get.
⇒ ∫2cos(x)dx/(1 - sin²x).
As we know that,
Formula of :
⇒ sin²x + cos²x = 1.
⇒ cos²x = 1 - sin²x.
Using this formula in equation, we get.
⇒ ∫2cos(x)dx/cos²x.
⇒ ∫2 dx/cos(x).
⇒ ∫2 sec x dx.
⇒ 2∫sec x dx.
⇒ 2 log(sec x + tan x) + c.
MORE INFORMATION.
(1) = ∫sin x dx = - cos x + c.
(2) = ∫cos x dx = sin x + c.
(3) = ∫tan x dx = ㏒(sec x) + c = -㏒(cos x) + c.
(4) = ∫sec x dx = ㏒(sec x + tan x) + c = -㏒(sec x - tan x) + c = ㏒ tan(π/4 + x/2) + c.
(5) = ∫cosec x dx = -㏒(cosec x + cot x) + c. = ㏒(cosec x - cot x) + c. = ㏒ tan(x/2) + c.
(6) = ∫sec x tan x dx = sec x + c.
(7) = ∫cosec x cot x dx = - cosec x + c.
(8) = ∫sec²x dx = tan x + c.
(9) = cosec²x dx = - cot x + c.