Integrate the following:-
Attachments:
mohdahmed32:
i donno
Answers
Answered by
0
Given:
(1) ∫ (1+x)² / x(1+x²) dx
(2) ∫ (x^4+x^2+x) / 2(1+x²) dx
To find:
Integrate the following.
Solution:
From given, we have,
(1) ∫ (1+x)² / x(1+x²) dx
taking the partial fraction, we get,
= ∫ 1/x + 2/(x²+1) dx
= ∫ 1/x dx + ∫ 2/(x²+1) dx
= log x + 2tan^{-1}x + c
(2) ∫ (x^4+x^2+x) / 2(1+x²) dx
= 1/2 ∫ (x^4+x^2+x) / (1+x²) dx
using long division method, we get,
= 1/2 ∫ x² + 1/(1+x²) dx
= 1/2 [∫ x² dx + ∫ 1/(1+x²) dx]
= 1/2 [x³/3 + tan^{-1}x] + c
Answered by
0
Answer:
Step-by-step explanation:
Hope you understood.
Attachments:
Similar questions