Math, asked by hethirani07, 1 month ago

Integrate the following function​

Attachments:

Answers

Answered by Mathkeeper
1

Step-by-step explanation:

We have,

 \int \frac{ {x}^{3} + 3 {x}^{2} + 2x + 1  }{x - 1} dx \\

  =  \int \frac{ {x}^{3}  -   {x}^{2} + 4 {x}^{2}   - 4x + 6x  - 6 + 5  }{x - 1} dx \\

  =  \int \frac{  {x}^{2}(x   -   1) + 4x(x - 1)  + 6(x  - 1) + 5  }{x - 1} dx \\

  =  \int  \bigg[ \frac{  {x}^{2}(x   -   1)}{x - 1} +  \frac{4x(x - 1) }{x - 1} + \frac{ 6(x  - 1)}{x - 1} + \frac{ 5  }{x - 1}  \bigg] dx \\

  =  \int  \frac{  {x}^{2}(x   -   1)}{x - 1}dx +  \int \frac{4x(x - 1) }{x - 1} dx+ \int \frac{ 6(x  - 1)}{x - 1} dx+ \int \frac{ 5  }{x - 1}   dx \\

  =  \int   {x}^{2}dx +  \int 4xdx+ \int 6dx+5 \int \frac{ 1 }{x - 1}   dx \\

  =     \frac{{x}^{3}}{3}+ 4  .\frac{ {x}^{2} }{2} + 6x+5  \ln(x - 1) + C \\

  =     \frac{{x}^{3}}{3}+ 2 {x}^{2}  + 6x+5  \ln(x - 1) + C \\

Similar questions