Math, asked by ananyaachandak4106, 1 year ago

Integrate the following function: f' (ax + b) [f (ax + b)]^n

Answers

Answered by Anonymous
1

Answer:

\displaystyle \int f'(ax+b)\bigl[f(ax+b)\bigr]^n\,dx =\tfrac{1}{a(n+1)}\bigl[f(ax+b)\bigr]^{n+1}

Step-by-step explanation:

Think about where things like this turn up by differentiating.  This looks almost like the result of using the Chain Rule to differentiate [ f(ax+b) ]^(n+1).

With that in mind...

\displaystyle \frac{d}{dx} \bigl[f(ax+b)\bigr]^{n+1} = (n+1)\bigl[f(ax+b)\bigr]^n\times\frac{d}{dx}f(ax+b) \\ \\= (n+1)\bigl[f(ax+b)\bigr]^n\times f'(ax+b) \times \frac{d}{dx}(ax+b)\\= a(n+1)f'(ax+b)\bigl[f(ax+b)\bigr]^n \\ \\\Rightarrow \frac{d}{dx} \left(\tfrac{1}{a(n+1)}\bigl[f(ax+b)\bigr]^{n+1}\right) = f'(ax+b)\bigl[f(ax+b)\bigr]^n

So going backwards...

\displaystyle \int f'(ax+b)\bigl[f(ax+b)\bigr]^n\,dx =\tfrac{1}{a(n+1)}\bigl[f(ax+b)\bigr]^{n+1}


Anonymous: Hope this helps. plzzz mark it brainliest. All the best!!!!
Similar questions