Math, asked by saurabhkrsharma6684, 1 year ago

Integrate the following function: \frac{e^{2x}-e^{-2x}}{e^{2x}+e^{-2x}}

Answers

Answered by VEDULAKRISHNACHAITAN
1

Answer:

\dfrac{\ln (e^{2x} + e^{-2x})}{2} + c[/tex]

Step-by-step explanation:

Hi,

We need to evaluate the following integral:

Let I = \int \dfrac{e^{2x} - e^{-2x} dx}{e^{2x} + e^{-2x}}

Let  e^{2x} + e^{-2x} = t , then

On differentiating, we get

2e^{2x} - 2e^{-2x} dx = dt

On substituting, the above integral I will become

I = \int \dfrac{dt}{2t}

I = \dfrac{\ln t}{2} + c,

where t = e^{2x} + e^{-2x}

Hence, I = \dfrac{\ln (e^{2x} + e^{-2x})}{2} + c

Hope, it helps !

Similar questions