Math, asked by guptaananya2005, 1 day ago

Integrate the following function with respect to x

 \frac{1}{x + 1 +  \sqrt{x + 1} }

Please don't spam

Quality answer needed as always expected and got.

EVALUATE

❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ

❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ

❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\sf  \frac{dx}{x + 1 +  \sqrt{x + 1} }

can be rewritten as

\rm \:  =  \: \displaystyle\int\sf  \frac{dx}{ {( \sqrt{x + 1}) }^{2} +  \sqrt{x + 1}  }

To evaluate this integral, we use method of Substitution.

So, we substitute

\red{\rm :\longmapsto\: \sqrt{x + 1} = y}

\red{\rm :\longmapsto\:x + 1 =  {y}^{2} }

\red{\rm \rm \implies\:\:dx= 2y \: dy}

So,

On substituting these values in given integral, we get

\rm \:  =  \: \displaystyle\int\sf  \frac{2ydy}{ {y}^{2}  + y}

\rm \:  =  \: 2 \displaystyle\int\sf \frac{y \: dy}{y(y + 1)}

\rm \:  =  \: 2 \displaystyle\int\sf \frac{dy}{y + 1}

We know

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\int\sf  \frac{dx}{x} \:  =  \: logx \:  +  \: c \: }}}

So, using this, we get

\rm \:  =  \: 2 \: log |y + 1| + c

\rm \:  =  \: 2 \: log | \sqrt{x + 1}  + 1| + c

Hence,

 \red{\boxed{ \tt{ \: \displaystyle\int\sf  \frac{dx}{x + 1 +  \sqrt{x + 1} }  =  \: 2 \: log | \sqrt{x + 1}  + 1| + c \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

 \red{\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}}

Similar questions