Math, asked by ani123pvnk, 9 months ago

integrate the following question​

Attachments:

Answers

Answered by kaushik05
19

To Integrate:

  \star \: \int \:  \frac{ { \sin}^{3}x  +  { \cos}^{3}x }{ { \sin}^{2} x \:  { \cos}^{2} x} dx \\

 \implies  \ \int \:  \frac{ { \sin}^{3}x }{ { \sin}^{2}x \:  { \cos}^{2}x  } dx +  \int \:  \frac{ { \cos}^{3} x}{ { \sin}^{2} x \:  {  \cos}^{2}x } dx \\  \\  \implies \:  \int \:  \frac{ \sin \: x}{ { \cos}^{2}x } dx +  \int \frac{ \cos \: x}{ { \sin}^{2}x } dx \\  \\  \implies \: \int \tan \: x \sec \: x \: dx +  \int \:  \cot \: x \cosec \: x \: dx \\  \\  \implies  \:  \sec \: x + \: ( -  \cosec \: x) + c \\  \\  \implies \:  \sec \: x -  \cosec \: x + c

Formula :

 \star  \bold{\int \: sec \: x \: tan \: x \: dx = secx \:  + c } \\   \\  \star  \bold{\int \: cosecx \: cotxdx =  -  cosecx \:  +  \: c}

Answered by parry8016
2

Step-by-step explanation:

HERE IS U R ANSWER DEAR PLZ FOLLW ME

Attachments:
Similar questions