Math, asked by SweetLily, 3 days ago

Integrate the following
\displaystyle{\bf{\rightarrow\;\;\green{\int \frac{  sinx + cosx}{ \sqrt{sin2x} }}.dx}}

Answers

Answered by ParikshitPulliwar
0

Answer: Using integration by parts

∫sinhxdx=xcoshx−∫coshxdx=xcoshx−sinhx+constant

⇒∫xsinhx=xcoshx−∫coshxdx

⇒∫xsinhx=xcoshx−sinhx+constant

Answered by jitenderjakhar
1

Step-by-step explanation:

∫ sin+cosx /√sin2x

Put sinx−cosx=t

(sinx+cosx)dx= dt

t^2 =1−sin2x

sin 2x = 1-t^2

∫ dt / √(1-t^2) =sin^-1 t+c

=sin^−1 (sinx−cosx)

=sin ^−1 {√2 sin(x−π/4)}

please mark as brainliest.

Similar questions