integrate the following:
Answers
Answered by
3
Answer:
(1/2) x - (1/8) Sin (4x + 10 ) + c
Step-by-step explanation:
To find ---> ∫ Sin² (2x + 5 ) dx
-----------
Solution--->
--------------
We have a formula
Cos2θ = 1 - 2 Sin²θ
=> 2 Sin²θ = 1 - Cos 2θ
Putting θ = 2x + 5
=> 2 Sin²(2x + 5) = 1 - Cos 2(2x+5)
=> 2 Sin² (2x + 5)= 1 - Cos (4x + 10)
Now,
I = ∫ Sin² (2x + 5) dx
= 1/2 ∫ 2 Sin² (2x + 5) dx
= 1/2 ∫ {1 - Cos( 4x + 10 ) } dx
= 1/2 ∫ 1 dx - 1/2 ∫ Cos (4x + 10) dx
We know that
∫ 1 dx = x + c
∫ Cosx dx = sinx + c
Applying these formulee
I= ( 1/2 )x - 1/2 Sin (4x +10) / 4 +c
= (1/2) x - (1/8 ) Sin (4x + 10 ) + c
Similar questions