Math, asked by happiestnaushi, 10 months ago

integrate the following(x3+8)(x-1)/x2-2x+4​

Answers

Answered by NaveenZ
15

The solution is given in the above attachment.

Attachments:
Answered by harendrachoubay
6

\int \dfrac{(x^{3}+8)(x-1)}{x^{2}-2x+4}  \, dx=\dfrac{x^{3} }{3} +\dfrac{x^{2} }{2}-2x+C

Step-by-step explanation:

We have,

I=\int \dfrac{(x^{3}+8)(x-1)}{x^{2}-2x+4}  \, dx

To find, \int \dfrac{(x^{3}+8)(x-1)}{x^{2}-2x+4}  \, dx=?

I=\int \dfrac{(x^{3}+8)(x-1)}{x^{2}-2x+4}  \, dx

I=\int \dfrac{(x^{3}+2^3)(x-1)}{x^{2}-2x+4} \, dx

I=\int \dfrac{(x+2)(x^{2}-2x+4)(x-1)}{x^{2}-2x+4} \, dx

[ ∵ a^{3}+b^{3} =(a+b)(a^{2}-ab+b^{2})

I=\int (x+2)(x-1) \, dx

I=\int (x^{2}-x+2) \, dx

I=\dfrac{x^{2+1} }{2+1} +\dfrac{x^{1+1} }{1+1}-2x+C

Where, C is called integration constant

I=\dfrac{x^{3} }{3} +\dfrac{x^{2} }{2}-2x+C

Hence, \int \dfrac{(x^{3}+8)(x-1)}{x^{2}-2x+4} \, dx=\dfrac{x^{3} }{3} +\dfrac{x^{2} }{2}-2x+C.

Similar questions